Homework 14.3: Tangent Lines and Derivatives For credit, please show all work and answers on separate paper
\#1-3 Find the slope of the tangent line to the graph of \boldsymbol{f} at the given point.

1. $f(x)=3 x+4$ at $(1,7)$
2. $f(x)=5-2 x$ at $(-3,11)$
3. $f(x)=\frac{6}{x+1}$ at $(2,2)$
\#4-6 Find an equation of the tangent line to the curve at the given point. Graph the curve and the tangent line.
4. $y=2 x-x^{3}$ at $(1,1)$
5. $y=\sqrt{x+3}$ at $(1,2)$
6. $y=\sqrt{1+2 x}$ at $(4,3)$
\#7-9 Find the derivative of the function at the given number.
7. $f(x)=2-3 x+x^{2}$ at -1
8. $g(x)=2 x^{2}+x^{3}$ at 1
9. $F(x)=\frac{1}{\sqrt{x}}$ at 4
\#10-12 Find $\boldsymbol{f}^{\prime}(\boldsymbol{a})$, where \boldsymbol{a} is in the domain of \boldsymbol{f}.
10. $f(x)=x^{2}+2 x$
11. $f(x)=-\frac{1}{x^{2}}$
12. $f(x)=\frac{x}{x+1}$
13. Velocity of a Ball If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height (in feet) after t seconds is given by $y=40 t-16 t^{2}$. Find the velocity when $t=2$.
14. Velocity on the Moon If an arrow is shot upward on the moon with a velocity of $58 \mathrm{~m} / \mathrm{s}$, its height (in meters) after t seconds is given by $H=58 t-0.83 t^{2}$
a. Find the velocity of the arrow after one second.
b. Find the velocity of the arrow when $t=a$.
c. At what time t will the arrow hit the moon?
d. With what velocity will the arrow hit the moon?
15. Inflating a Balloon A spherical balloon is being inflated. Find the rate of change of the surface area ($S=4 \pi r^{2}$) with respect to the radius r when $r=2 f t$.
