Homework 14.3: Tangent Lines and Derivatives For credit, please show all work and answers on separate paper

#1-3 Find the slope of the tangent line to the graph of f at the given point.

1. f(x) = 3x + 4 at (1,7) 2. f(x) = 5 - 2x at (-3,11) 3. $f(x) = \frac{6}{x+1}$ at (2,2)

#4-6 Find an equation of the tangent line to the curve at the given point. Graph the curve and the tangent line.

- 4. $y = 2x x^3$ at (1,1) 6. $y = \sqrt{1 + 2x}$ at (4,3)
- 5. $y = \sqrt{x+3} at (1,2)$

5.
$$y = \sqrt{1 + 2x}$$
 at (4, 5)

#7-9 Find the derivative of the function at the given number.

7. $f(x) = 2 - 3x + x^2$ at -1 8. $g(x) = 2x^2 + x^3$ at 1 9. $F(x) = \frac{1}{\sqrt{x}}$ at 4

#10-12 Find f'(a), where *a* is in the domain of *f*.

- 10. $f(x) = x^2 + 2x$
- 11. $f(x) = -\frac{1}{x^2}$

- 12. $f(x) = \frac{x}{x+1}$
- 13. Velocity of a Ball If a ball is thrown into the air with a velocity of 40 ft/s, its height (in feet) after t seconds is given by $y = 40t 16t^2$. Find the velocity when t = 2.
- 14. Velocity on the Moon If an arrow is shot upward on the moon with a velocity of 58 m/s, its height (in meters) after t seconds is given by $H = 58t 0.83t^2$
 - a. Find the velocity of the arrow after one second.
 - b. Find the velocity of the arrow when t = a.
 - c. At what time *t* will the arrow hit the moon?
 - d. With what velocity will the arrow hit the moon?
- 15. Inflating a Balloon A spherical balloon is being inflated. Find the rate of change of the surface area ($S = 4\pi r^2$) with respect to the radius r when r = 2 ft.