\qquad
\qquad
\qquad

Chapter 2 Test Review

ALL PROBLEMS MUST BE DONE ON SEPARATE PAPER. THE REVIEW WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT

1) Determine whether the equation defines y as a function of x.
a) $y=\frac{1}{x}$
b) $y^{2}=4-x^{2}$
c) $y=\frac{4 x-1}{x}$
d) $8 x+x^{2}-59=y$
e) $y^{2}+x=4$
2) Find the value for the function.
a) Find $f(4)$ when $f(x)=x^{2}+5 x-1$
d) Find $f(x+h)$ when $f(x)=3 x^{2}-4 x-4$
b) Find $f(2)$ when $f(x)=\frac{x^{2}-3}{x-1}$
e) Find $f(x-2)$ when $f(x)=3 x^{2}+5 x+3$
c) Find $f(2 x)$ when $f(x)=\sqrt{7 x^{2}-3 x}$
3) The function $P(d)=1+\frac{d}{33}$ gives the pressure, in atmospheres (atm), at a depth d feet in the sea. Find the pressure at 55 feet.
4) Find the domain of the function.
a) $f(x)=\frac{x}{x^{2}+5}$
b) $h(x)=\frac{x-3}{x^{3}-25}$
c) $f(x)=\sqrt{10-x}$
d) $g(x)=\frac{x}{\sqrt{x+7}}$
5) For the given functions f and g, find the requested function and state its domain.
a) $f(x)=9-6 x ; g(x)=-2 x+6$
e) $(x)=2 x^{3}-1, g(x)=4 x^{2}-3$

Find $f+g$.
b) $f(x)=6 x-7 ; g(x)=9 x-8$

Find $f-g$.
c) $f(x)=2 x-4 ; g(x)=9 x-2$

Find $f \cdot g$.
d) $f(x)=5 x+1 ; g(x)=6 x-5$

Find $\frac{f}{g}$.

Find $f \cdot g$.
f) $(x)=\sqrt{x} ; g(x)=5 x-2$

Find $\frac{f}{g}$.
g) $f(x)=\sqrt{x+5} ; \quad g(x)=\frac{2}{x}$

Find $f \cdot g$.
h)) $f(x)=3 x+5 ; g(x)=4 x-1$

Find $\frac{f}{g}$.
6) Find and simplify the difference quotient of $\mathrm{f}, \frac{\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{x})}{h} \boldsymbol{h} \neq \mathbf{0}$, for the function.
a) $f(x)=7 x+8$
b) $f(x)=2 x^{2}$
C) $f(x)=5 x+1$
\qquad
\qquad
7) The graph of a function f is given. Use the graph to answer the question. Use the graph of f given below to find
a) $f(20)$.
b) Is $f(-50)$ positive or negative?
c) What is the domain of f ?
d) For what numbers is $f(x) \leq 0$?

8) The graph of a function is given. Decide whether it is even, odd, or neither.

9) The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval.
a) $(-3,0.5)$
b) $(0.5,3.5)$
c) $(3.5,6)$

10) Find the numbers, if any, at which f has a local maximum and/or a local minimum. What are the local maxima and minima?.

\qquad
11) For the graph of the function $y=f(x)$, find the absolute maximum and the absolute minimum, if it exists.

12) Find the average rate of change for the function between the given values.

$$
f(x)=x^{2}+7 x ; \text { from } 1 \text { to } 5
$$

13) Graph the function.
a) $f(x)=\left\{\begin{array}{cl}x+1 & \text { if }-7 \leq x<5 \\ -7 & \text { if } x=5 \\ -x+8 & \text { if } x>5\end{array}\right.$
b) $f(x)=\operatorname{int}(x)+1$
c) $f(x)=\left\{\begin{array}{llr}1 & \text { if } & 0 \leq x<3 \\ |x| & \text { if } & 3 \leq x<7 \\ \sqrt{x} & \text { if } & 7 \leq x \leq 13\end{array}\right.$
14) Write the equation of a function that has the given characteristics.
a) The graph of $y=x^{2}$, shifted 6 units upward
b) The graph of $y=|x|$, shifted
8 units upward
c) The graph of $y=\sqrt{x}$, shifted 7 units to the right
15) Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting.
a) $f(x)=(x+3)^{2}+3$
b) $f(x)=2 x^{2}$
c) $f(x)=3(x+1)^{2}+2$
16) Use the graph of $f(x)=x^{2}$ to sketch the graph of the indicated equation.
$y=-\frac{1}{3} f(x+5)^{2}+2$
