Chapter 5 and Spiral 10 Review

ALL PROBLEMS MUST BE DONE ON SEPARATE PAPER OTHERWISE; THE REVIEW WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT. REVIEW IS DUE ON TEST DAY.

Graph the equation. 1) $(x-4)^2 + y^2 = 9$ Find the center (h, k) and radius r of the circle with the given equation. 2) $x^2 + y^2 + 4x - 2y = 76$ Find the vertex, focus, and directrix of the parabola. Graph the equation. 3) $y^2 = -8x$ Find the equation of the parabola described. 4) Vertex at (7, -6); focus at (8, -6)5) Vertex at (1,7); focus at (1,5) Find the vertex, focus, and directrix of the parabola. Graph the equation. 6) $(x+1)^2 = (y+2)$ Find an equation for the ellipse. 7) Center at (0,0); focus at (3,0); vertex at (8,0)Find the center, foci, and vertices of the ellipse. 9) $\frac{(x+1)^2}{36} + \frac{(y-2)^2}{9} = 1$ 8) $2x^2 + 4y^2 - 12x + 56y + 206 = 0$ Find an equation for the ellipse described. 10) Center at (2, 6); focus at (5, 6); vertex at (7, 6) Find an equation for the hyperbola described. Graph the equation. 11) Center at (0,0); focus at ($\sqrt{65}$, 0); vertex at (4,0) Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola. $\frac{(x+3)^2}{25} - \frac{(y+4)^2}{36} = 1$ 13) $(x-4)^2 - 25(y+3)^2 = 25$ Find the asymptotes of the hyperbola. 14) $x^2 - y^2 + 4x - 6y - 30 = 0$ Find a rectangular equation for the plane curve defined by the parametric equations. 15) $x = 2t, y = t + 4; -2 \le t \le 3$ Graph the curve whose parametric equations are given. 16) $x = 2t - 1, y = t^2 + 3; -4 \le t \le 4$ Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. 17) $f(x) = 4^{(x+4)} - 1$ 18) $f(x) = 5^{-x} + 2$ Solve the equation. 19) $4^{7-3x} = \frac{1}{16}$ Graph the function. $20)f(x) = 2 - e^{-x}$ Solve the equation. 21) $3^{-x} = \frac{1}{81}$ 22) $4^{x-1} = 32^{3x}$ 23) $27^{4x+3} = 9^{5x}$ Change the exponential expression to an equivalent expression involving a logarithm. 24) $7^3 = 343$ Change the logarithmic expression to an equivalent expression involving an exponent. 25) $log_2 \frac{1}{8} = -3$ Find the exact value of the logarithmic expression. 27) $log_4 \frac{1}{64}$ 26) log_39 Find the domain of the function. 28) f(x) = log(x + 4)Graph the function. $29) f(x) = log_4(x + 1)$ Solve the equation. 30) $log_3 x = 2$ 31) $log_8(x^2 - 7x) = 1$

Use the properties of logarithms to find the exact value of the expression. Do not use a calculator. log_09^{16}

Write as the sum and/or difference of logarithms. Express powers as factors.

33)
$$log_2\left(\frac{x^3}{y^7}\right)$$

Express as a single logarithm.

34) $2log_bq - log_br$

Use the Change-of-Base Formula and a calculator to evaluate the logarithm. Round your answer to three decimal places.

35) log₈78.71

Solve the equation.

 $36 \quad \log_5(x - 3) = 3$

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

37) $2^{x+8} = 4$

38) $e^{x+6} = 2$

Solve the problem.

39) Austin invested \$12,000 in an account at 12% compounded quarterly. Find the amount in Austin's account after a period of 6 years.

Solve the problem. Round to the nearest cent.

40) What principal invested at 6%, compounded continuously for 3 years, will yield \$1500? Round the answer to two decimal places.

Solve the problem. Round your answer to three decimals.

41) What annual rate of interest is required to double an investment in 8 years? **Solve the problem.**

42) The size P of a small herbivore population at time t (in years) obeys the function $P(t) = 500e^{0.2t}$ if they have enough food and the predator population stays constant. After how many years will the population reach 2000? Round to the nearest hundredth.

$$P(t) = \frac{990}{1 + 27.29e^{-0.348t}}$$

43) The logistic growth model $1 + 27.29e^{-0.5461}$ represents the population of a bacterium in a culture tube after t hours. When will the amount of bacteria be 690?

Write the partial fraction decomposition of the rational expression.

 $\frac{x}{x^2 - 3x + 2}$ 44) $\frac{-3x^2 - 11x - 11}{(x + 2)(x + 1)^2}$

46) Conservationists tagged 120 black-nosed rabbits in a national forest in 2009. In 2012, they tagged 240 black-nosed rabbits in the same range. If the rabbit population follows the exponential law, how many rabbits will be in the range 5 years from 2009?