ALL PROBLEMS MUST BE DONE ON SEPARATE PAPER OTHERWISE; THE REVIEW WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT. REVIEW IS DUE ON TEST DAY.
Graph the equation.

1) $(x-4)^{2}+y^{2}=9$

Find the center (\mathbf{h}, \mathbf{k}) and radius \mathbf{r} of the circle with the given equation.
2) $x^{2}+y^{2}+4 x-2 y=76$

Find the vertex, focus, and directrix of the parabola. Graph the equation.
3) $y^{2}=-8 x$

Find the equation of the parabola described.
4) Vertex at $(7,-6)$; focus at $(8,-6)$
5) Vertex at $(1,7)$; focus at $(1,5)$

Find the vertex, focus, and directrix of the parabola. Graph the equation.
6) $(x+1)^{2}=(y+2)$

Find an equation for the ellipse.
7) Center at $(0,0)$; focus at $(3,0)$; vertex at $(8,0)$

Find the center, foci, and vertices of the ellipse.
8) $2 x^{2}+4 y^{2}-12 x+56 y+206=0$
9) $\frac{(x+1)^{2}}{36}+\frac{(y-2)^{2}}{9}=1$

Find an equation for the ellipse described.
$10)$ Center at $(2,6)$; focus at $(5,6)$; vertex at $(7,6)$
Find an equation for the hyperbola described. Graph the equation.
11) Center at $(0,0)$; focus at $(\sqrt{65}, 0)$; vertex at $(4,0)$

Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
12) $\frac{(x+3)^{2}}{25}-\frac{(y+4)^{2}}{36}=1$
13) $(x-4)^{2}-25(y+3)^{2}=25$

Find the asymptotes of the hyperbola.
14) $x^{2}-y^{2}+4 x-6 y-30=0$

Find a rectangular equation for the plane curve defined by the parametric equations.
15) $x=2 t, y=t+4 ;-2 \leq t \leq 3$

Graph the curve whose parametric equations are given.
16) $x=2 t-1, y=t^{2}+3 ;-4 \leq t \leq 4$

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function.
17) $f(x)=4^{(x+4)}-1$
18) $f(x)=5^{-x}+2$

Solve the equation.
19) $4^{7-3 x}=\frac{1}{16}$

Graph the function.
20) $f(x)=2-e^{-x}$

Solve the equation.
21) $3^{-x}=\frac{1}{81}$
22) $4^{x-1}=32^{3 x}$
23) $27^{4 x+3}=9^{5 x}$

Change the exponential expression to an equivalent expression involving a logarithm.
24) $7^{3}=343$

Change the logarithmic expression to an equivalent expression involving an exponent.
25)

$$
\log _{2} \frac{1}{8}=-3
$$

Find the exact value of the logarithmic expression.
26) $\log _{3} 9$
27) $\log _{4} \frac{1}{64}$

Find the domain of the function.
28) $f(x)=\log (x+4)$

Graph the function.
29) $f(x)=\log _{4}(x+1)$

Solve the equation.
30) $\log _{3} x=2$
31) $\log _{8}\left(x^{2}-7 x\right)=1$

Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.
32) $\log _{9} 9^{16}$

Write as the sum and/or difference of logarithms. Express powers as factors.
33) $\log _{2}\left(\frac{x^{3}}{y^{7}}\right)$

Express as a single logarithm.
34) $2 \log _{b} q-\log _{b} r$

Use the Change-of-Base Formula and a calculator to evaluate the logarithm. Round your answer to three decimal places.
35) $\log _{8} \log _{8} 78.71$

Solve the equation.
$36 \quad \log _{5}(x-3)=3$
Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.
37) $2^{x+8}=4$

$$
\text { 38) } e^{x+6}=2
$$

Solve the problem.
39) Austin invested $\$ 12,000$ in an account at 12% compounded quarterly. Find the amount in Austin's account after a period of 6 years.
Solve the problem. Round to the nearest cent.
40) What principal invested at 6%, compounded continuously for 3 years, will yield $\$ 1500$? Round the answer to two decimal places.
Solve the problem. Round your answer to three decimals.
41) What annual rate of interest is required to double an investment in 8 years?

Solve the problem.
42) The size P of a small herbivore population at time t (in years) obeys the function $P(t)=500 e^{0.2 t}$ if they have enough food and the predator population stays constant. After how many years will the population reach 2000? Round to the nearest hundredth.

$$
P(t)=\frac{990}{1+27.29 e^{-0.348 t}}
$$

represents the population of a bacterium in a culture tube after t
43) The logistic growth model hours. When will the amount of bacteria be 690?
Write the partial fraction decomposition of the rational expression.
44) $\frac{x}{x^{2}-3 x+2}$
45) $\frac{-3 x^{2}-11 x-11}{(x+2)(x+1)^{2}}$
46) Conservationists tagged 120 black-nosed rabbits in a national forest in 2009. In 2012, they tagged 240 black-nosed rabbits in the same range. If the rabbit population follows the exponential law, how many rabbits will be in the range 5 years from 2009?

