Precalculus Lesson 9.5 The Dot Product Mrs. Snow, Instructor

The concept of the dot product is used in calculus and in the applications of vectors in physics and engineering.

If $v = a_1i + b_1j = \langle a_1, b_1 \rangle$ and $w = a_2i + b_2j = \langle a_2, b_2 \rangle$ are vectors, then their dot product, denoted by $v \cdot w$, is defined by

$$v \cdot w = a_1 a_2 + b_1 b_2$$

say: "v dot w"

Given:

$$\langle 2, -3 \rangle$$
 $\langle 5, 3 \rangle$
 $v = 2i - 3j$ and $w = 5i + 3j$

Find the following dot products:

a)
$$v \cdot w = (2(5) + (-3)(3) = 10 - 9 = 1$$

b)
$$w \cdot v = (5)(z) + (3(-3)) = -9 + 10 = 1$$

The following properties of the Dot Product are useful in solving problems involving the Dot Product:

$$u \cdot v = v \cdot u$$

$$(au) \cdot v = a(u \cdot v) = u \cdot (av)$$

$$u \cdot (v + w) = u \cdot v + u \cdot w$$

$$v \cdot v = ||v||^2$$

$$0 \cdot v = 0$$

The Dot Product Theorem

If we have u and v be vectors with initial points at the origin, the angle θ that is between u and v is $0 < \theta < \pi$.

$$u \cdot v = \|u\| \|v\| \cos\theta$$

$$cos\theta = \frac{u \cdot v}{\|u\| \|v\|}$$

Find the angle θ between u = 4i - 3j and v = 2i + 5j

$$= -7$$
 $||u|| = 1/6 + 9$
 $= 1/2$
 $||u|| = 5$

COSO =~.26

D ~ 105°

* Chech w/

Tough sketch!

11VII = N4+25 = N29

Orthogonal Vectors (a.k.a. perpendicular)

Two vectors v and w are orthogonal, a.k.a. perpendicular, if and only if: $v \cdot w = 0$

Determine whether the vectors in each pair are perpendicular

$$v = 2i - j$$
 and $w = 3i + 6j$

Work

Dot product application

The work W done by a force F in moving along a vector D is $W = F \cdot D$.

English units of force is pounds (lbs.)

When the force acting on the object is at an angle, remember to put into component form.

A girl is pulling a wagon with a force of 50 pounds. How much work is done in moving the wagon 100 feet if the handle makes an angle of 30° with the ground?

W=F.D

$$F = 50 \cos 30i + 50 \sin 30i$$

$$F = 50(\frac{12}{3})i + 50(\frac{1}{2})i$$

$$F = 35 N3i + 25i$$

$$D = 100i + 0i$$

$$W = F \cdot D = (25 N3)(100) + (25)(0)$$

$$W = 2500 N3$$

\$50 : Direction of Menement's horizontal

The only component of ferce involved to the work on the wagon is the horizontal component.