Precalculus

Lesson 9.2 Graphs of Polar Equations

Mrs. Snow, Instructor

To plot points with polar coordinates, it is convenient to use a polar grid. It is sort of like the unit circle superimposed with graph paper, like below:
Special graphs:
$\theta=$ constant - graphs a line at angle θ
$\mathrm{r}=$ constant - graphs a circle of radius r
Sketch the graph of the equation and
express the equation in rectangular
coordinates:
$\theta=\frac{\pi}{3}$

Graphing a Polar Equation of a Line:

Some equations can easily be expressed in rectangular coordinates. If this is the case then convert to rectangular coordinates.

In summary the equations in the forms below will graph as lines, note the forms for horizontal and vertical lines. Textbook (pg. 580:

Lines			
Description	Line passing through the pole making an angle α with the polar axis	Vertical line	Horizontal line
Rectangular equation	$y=(\tan \alpha) x$	$x=a$	$y=b$
Polar equation	$\theta=\alpha$	$r \cos \theta=a$	$r \sin \theta=b$
Typical graph			

Identifying and Graphing a Polar Equation of a Circle (pg. 581):

Sketch the polar equation (transform the equation into its rectangular form)

$$
r=4 \sin \theta
$$

Sketch the polar equation

$$
r=-2 \cos \theta
$$

Other Equations (pg. 581)

Other Equations			
Name	Cardioid	Limaçon without inner loop	Limaçon with inner loop
Polar equations	$r=a \pm a \cos \theta, \quad a>0$	$r=a \pm b \cos \theta, \quad 0<b<a$	$r=a \pm b \cos \theta, \quad 0<a<b$
	$r=a \pm a \sin \theta, \quad a>0$	$r=a \pm b \sin \theta, \quad 0<b<a$	$r=a \pm b \sin \theta, \quad 0<a<b$
Typical graph			

if cosine: along polar axis
if sine: along $\frac{\pi}{2}$ axis
a. Limacon without inner loop if:
$1<\left|\frac{a}{b}\right|<2 \rightarrow a>b$

b. Limacon has an inner loop if:
$\left|\frac{a}{b}\right|<1 \rightarrow a<b$

Cardioid - heart shaped (pg. 581)

graph $\quad r=1-\sin \theta$
$a=1$; length of cardioid= \qquad equation is sine so along the $\theta=\frac{\pi}{2}$ axis and $-\sin \theta$ means

Whenever you cannot remember how to graph the polar equation, you can always graph a period of the trig function from $0 \leq \theta<2 \pi$ and transfer the data over to a polar graph. Don't rely on memorizing an equation and associated graph shape, you will want a backup method!! Table of values (use values for theta that yield friendly values for r):

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$	2π
$\sin \theta$							
$\mathrm{r}=1-\sin \theta$							

Graphing a limaçon without an inner loop

Sketch the graph of the equation $r=3+2 \cos \theta$

More Equations

Graphing a Polar Equation: n-leaved rose (petals)

Lemniscates - Figure 8 shaped curves

$$
r^{2}=a^{2} \sin 2 \theta \quad r^{2}=a^{2} \cos 2 \quad a=\text { petal length }
$$

$$
r^{2}=a^{2} \sin 2 \theta
$$

Graphing a Polar Equation (spiral)

It is the locus of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity.

There are several equations that will produce a spiral. The logarithmic spiral

$$
r=e^{\theta / 5}
$$

may be written as $\theta=5 \ln r$

Archimedes Spiral is in the form of

$$
r=a \theta
$$

$$
\rho=\frac{1}{2 \pi} \theta
$$

