Precalculus

Lesson 7.1: The Inverse Sine, Cosine and Tangent Functions Mrs. Snow, Instructor

in Section 5.2 we discussed inverse functions. If a function is one-to-one if has an inverse. We are able to restrict the domain of a function to make it one-to-one. While trig functions are of course functions, they are not 1-1, so they do not have inverses. We can, however, force our trig functions into being 1-1 by limiting their domain.

Inverse Sine Function: sin^{-1} is also known as <u>arcsine</u> and written as <u>arcsin</u>

By definition: the inverse sine function is the function sin^{-1} , with a domain of [-1,1] and range of $[-\frac{\pi}{2},\frac{\pi}{2}]$ defined by:

 $y = \sin^{-1} x$ means $x = \sin y$ where $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Finding the exact value of an inverse sine function:

sin ⁻¹ 1	$\sin^{-1} - \frac{1}{2}$	$sin^{-1}\frac{3}{2}$
Sine of what O is Sin O = 1 look at Sin O = 1 look at O = \frac{1}{2} ut W Yishacked W	Sin 0 = 1 = 1	$Sin \theta = \frac{3}{2}$??
Y 15 hiller		$Sin \theta = \frac{max1}{min-1}$

Approximate values of inverse sine functions may be found using a calculator. Express the answer in radians rounded to 2 decimal places

$$\sin^{-1}\frac{1}{3}$$
 $\sin^{-1}\left(-\frac{1}{4}\right)$ $\approx ... -25 \text{ rad}$

In the terms of the sine function and its inverse, we have the following properties:

$$f^{-1}(f(x)) = \sin^{-1}(\sin x) = x \quad \text{where } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$f(f^{-1}(x)) = \sin(\sin^{-1} x) = x \quad \text{where } -1 \le x \le 1$$

Inverse Cosine Function: cos^{-1} also called <u>arrcosine</u> and written as <u>arccsos</u>

By definition the inverse cosine function is the function cos^{-1} with domain of [-1,1] and range of $[0,\pi]$ defined by

In the terms of the cosine function and its inverse, we have the following properties:

$$f^{-1}(f(x)) = \cos^{-1}(\cos x) = x$$
 where $0 \le x \le \pi$
 $f(f^{-1}(x)) = \cos(\cos^{-1} x) = x$ where $-1 \le x \le 1$

even function trig identity

Minimum output is - 1

Inverse Tangent Function: tan^{-1} also called arctangent and written as arctangent

 $\tan^{-1} x = y$ Domain: $(-\infty, \infty)$

The inverse tangent function is the function tan^{-1} with domain of all real numbers and range $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ defined by

$$y = \tan^{-1} x$$
 means $x = \tan y$
where $-\infty < x < \infty$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$

EXAMPLE Evaluate the inverse tangent functions

$$y = \tan^{-1} 1$$

Boundary tand
$$\left(-\frac{11}{z}\frac{\pi}{z}\right)$$

 $y = \tan^{-1} - \sqrt{3}$
 $\tan \theta = -\sqrt{3}$
Unegative $\theta = -\frac{\pi}{3}$

I negative
$$\theta = -1$$

$$y = \tan^{-1}(-20)$$
 \Leftrightarrow put into cole,

$$\tan\theta = -20$$
 $\theta \approx 1.52$

In the terms of the tangent function and its inverse, we have the following properties:

$$f^{-1}(f(x)) = \tan^{-1}(\tan x) = x$$
 where $-\frac{\pi}{2} < x < \frac{\pi}{2}$

where
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$f(f^{-1}(x)) = \tan(\tan^{-1} x) = x$$
 where $-\infty < x < \infty$

where
$$-\infty < x < \infty$$