Precalculus

Lesson 7.1: The Inverse Sine, Cosine and Tangent Functions

 Mrs. Snow, Instructorin Section 5.2 we discussed inverse functions. If a function is one-to-one if has an inverse. We are able to restrict the domain of a function to make it one-to-one. While trig functions are of course functions, they are not $1-1$, so they do not have inverses. We can, however, force our trig functions into being 1-1 by limiting their domain.

Inverse Sine Function: $\boldsymbol{\operatorname { s i n }}^{\mathbf{- 1}}$ is also known as arcsine and written as arcsin

By definition: the inverse sine function is the function $\sin ^{-1}$, with a domain of $[-1,1]$ and range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ defined by:

$$
\begin{gathered}
y=\sin ^{-1} x \quad \text { means } \quad x=\sin y \\
\text { where } \quad-1 \leq x \leq 1 \quad \text { and } \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
\end{gathered}
$$

Finding the exact value of an inverse sine function:

$\sin ^{-1} 1$	$\sin ^{-1}-\frac{1}{2}$	$\sin ^{-1} \frac{3}{2}$

Approximate values of inverse sine functions may be found using a calculator. Express the answer in radians rounded to 2 decimal places.

$\sin ^{-1} \frac{1}{3}$	$\sin ^{-1}\left(-\frac{1}{4}\right)$

In the terms of the sine function and its inverse, we have the following properties:

$$
\begin{array}{ll}
f^{-1}(f(x))=\sin ^{-1}(\sin x)=x & \text { where }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
f\left(f^{-1}(x)\right)=\sin \left(\sin ^{-1} x\right)=x & \text { where }-1 \leq x \leq 1
\end{array}
$$

Find the exact value of composite functions:

$\sin ^{-1}\left(\sin \frac{\pi}{8}\right)$	$\sin ^{-1}\left(\sin \frac{5 \pi}{8}\right)$

Inverse Cosine Function: $\boldsymbol{c o s}^{\mathbf{1}}$ also called arrcosine and written as arccsos

By definition the inverse cosine function is the function $\cos ^{-1}$ with domain of $[-1,1]$ and range of $[0, \pi]$ defined by

$$
y=\cos ^{-1} x \quad \text { means } x=\cos y
$$

$$
\text { where }-1 \leq x \leq 1 \quad \text { and } \quad 0 \leq y \leq \pi
$$

$\cos ^{-1} 0$	$\cos ^{-1}-\frac{\sqrt{2}}{2}$

In the terms of the cosine function and its inverse, we have the following properties:

$$
\begin{array}{ll}
f^{-1}(f(x))=\cos ^{-1}(\cos x)=x & \text { where } 0 \leq x \leq \pi \\
f\left(f^{-1}(x)\right)=\cos \left(\cos ^{-1} x\right)=x & \text { where }-1 \leq x \leq 1
\end{array}
$$

$\cos ^{-1}\left(\cos \left(\frac{\pi}{12}\right)\right)$	$\cos ^{-1}\left[\cos \left(-\frac{2 \pi}{3}\right)\right]$
${\cos \left(\cos ^{-1} \pi\right)}$	

Inverse Tangent Function: $\boldsymbol{t a n}^{\mathbf{- 1}}$ also called arctangent and written as arctan

Domain:

Range:

$$
\tan ^{-1} x=y
$$

Domain:
Range:

The inverse tangent function is the function $\tan ^{-1}$ with domain of all real numbers and range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ defined by

$$
\begin{aligned}
& y=\tan ^{-1} x \text { means } x=\tan y \\
& \text { where }-\infty<x<\infty \quad \text { and }-\frac{\pi}{2}<y<\frac{\pi}{2}
\end{aligned}
$$

EXAMPLE Evaluate the inverse tangent functions
$y=\tan ^{-1} 1 \quad y=\tan ^{-1}-\sqrt{3}$

In the terms of the tangent function and its inverse, we have the following properties:

$$
\begin{array}{ll}
f^{-1}(f(x))=\tan ^{-1}(\tan x)=x & \text { where }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
f\left(f^{-1}(x)\right)=\tan \left(\tan ^{-1} x\right)=x & \text { where }-\infty<x<\infty
\end{array}
$$

