Chapter 12 and 14 Review ALL PROBLEMS MUST BE DONE ON SEPARATE PAPER OTHERWISE; THE REVIEW WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT. REVIEW IS DUE ON TEST DAY.

1. Complete the table of values (to 5 decimal places) and use the table to estimate the value of the limit.

	a. $\lim_{x \to 4} \frac{\sqrt{x}}{x}$	$\frac{-2}{4} =$				
Х	3.9	3.99	3.999	4.001	4.01	4.1
F(x)						
b. $\lim_{x \to 1} \frac{x-1}{x^3-1} =$						
Х	.9	.99	.999	1.001	1.01	1.1
$F(\mathbf{x})$						

- - a. $\lim_{x \to 2^+} f(x)$
 - b. $\lim_{x \to 2^{-}} f(x)$ c. $\lim_{x \to 2} f(x)$
- 3. Graph the piecewise-defined function and use your graph to find the values of the limes, if they exist.

a.
$$f(x) = \begin{cases} -x+3 & \text{if } x < -1 \\ 3 & \text{if } x \ge -1 \end{cases}$$

b.
$$f(x) = \begin{cases} 2x+10 & \text{if } x \le -2 \\ -x+4 & \text{if } x > -2 \end{cases}$$

i.
$$\lim_{x \to -1^-} f(x)$$

ii.
$$\lim_{x \to -1^+} f(x)$$

iii.
$$\lim_{x \to -1^+} f(x)$$

iii.
$$\lim_{x \to -1^+} f(x)$$

iii.
$$\lim_{x \to -2^+} f(x)$$

iii.
$$\lim_{x \to -2^+} f(x)$$

4. Suppose that $\lim_{x \to a} f(x) = -3$, $\lim_{x \to a} f(x) = 0$, and $\lim_{x \to a} f(x) = 8$. Find the value of the given limit.

a.
$$\lim_{x \to a} [f(x) + h(x)]$$

b.
$$\lim_{x \to a} [f(x)]^2$$

c.
$$\lim_{x \to a} \sqrt[3]{h(x)}$$

d.
$$\lim_{x \to a} \frac{1}{f(x)}$$

e.
$$\lim_{x \to a} \frac{f(x)}{h(x)}$$

f.
$$\lim_{x \to a} \frac{g(x)}{f(x)}$$

g.
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

h.
$$\lim_{x \to a} \frac{2f(x)}{h(x) - f(x)}$$

5. Evaluate the limit.

a.
$$\lim_{x \to 4} (5x^2 - 2x + 3)$$

b. $\lim_{x \to 0} \frac{(2+h)^3 - 8}{h}$
c. $\lim_{x \to 0} \frac{\sqrt{1+h} - 1}{h}$

6. Find the slope of the tangent line to the graph of f at the given point.

- a. $f(x) = 3x + 4 \ at(1,7)$ b. $f(x) = 4x^2 - 3x \ at(-1,7)$ c. $f(x) = \frac{1}{x^2} \ at(-1,1)$
- 7. Find the derivative of the function at the given number.

$$f(x) = 1 - 3x^2 at 2$$
 b. $f(x) = \frac{1}{\sqrt{x}} at 4$

- 8. If an arrow is shot upward on the moon with a velocity of 58 m/s, its height (in meters) after t seconds is given by $H = 58t 0.83t^2$.
 - a. Find the velocity of the arrow after one second.
 - b. Find the velocity of the arrow when t = a.
 - c. At what time t will the arrow hit the moon.
 - d. With what velocity will the arrow hit the moon.
- 9. Find the limit.

a.

a.
$$\lim_{x \to \infty} \frac{2x+1}{5x-1}$$
 b. $\lim_{x \to \infty} \frac{x^2+2}{x^3+x+1}$

10. If the sequence is convergent, find its limit. If it is divergent, explain why.

a.
$$a_n = \frac{n^2}{n+1}$$
 b. $a_n = \frac{3}{n^2} \left[\frac{n(n+1)}{2} \right]$

11. Find the area of the region that lies under the graph of f over the given interval.

a.
$$f(x) = 4x^3, \ 0 \le x \le 2$$

b.
$$f(x) = x + x^2, \ 0 \le x \le 1$$

12. Approximate the area of the shaded region under the graph of the given function by using the indicated rectangles. (The rectangles have equal width.)

c.
$$f(x) = 6x - x^3$$

13. Determine the common difference, the fifth term, the *n*th term, and the 100th term of the arithmetic sequence.

1, 6, 11, 16, ...

- 14. Find the partial sum S_{\varkappa} of the arithmetic sequence that satisfies the given conditions: a=1, d = 3, n=22
- 15.Determine the common ratio, the fifth term, and the *n*th term of the geometric

sequence.
$$2, \frac{8}{3}, \frac{32}{9}, \frac{128}{27}, \dots$$

16. Find the partial sum S_n of the geometric sequence that satisfies the conditions $a = \frac{2}{3}, r = \frac{1}{3}, n = 5$

- 17.Use the Binomial Theorem to expand the expression $(2x + y)^5$
- 18. Find the term containing x^8 in the expansion of $(x+3y)^{10}$.