Precalculus

Lesson 14.2: Algebra Techniques for Finding Limits

Mrs. Snow, Instructor
Limit Laws

$\lim _{x \rightarrow a} f(x) \quad$ and $\quad \lim _{x \rightarrow a} g(x)$
1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
$7 . \lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$

Using the Limit Laws

Use the limit laws and the graphs of f and g in Figure to evaluate the following limits, if they exist.
$\lim _{x \rightarrow-2}[f(x)+5 g(x)]$
$\lim _{x \rightarrow 1}[f(x) g(x)]$
$\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}$

$\lim _{x \rightarrow 1}[f(x)]^{3}$

Some Special Limits

1. $\lim _{x \rightarrow a} c=c$
2. $\lim _{x \rightarrow a} x=a$
3. $\lim _{x \rightarrow a} x^{n}=a^{n}$
4. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$
Limits by Direct Substitution:
$\lim _{x \rightarrow a} f(x)=f(a)$

Using the Limit Laws: Evaluate the following limits.

$$
\lim _{x \rightarrow 5} 2 x^{2}-3 x+4
$$

$$
\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}+1}{5-3 x}
$$

Finding Limits by Direct Substitution: Evaluate the following limits.

$$
\lim _{x \rightarrow 3} 2 x^{3}-10 x-8
$$

$$
\lim _{x \rightarrow-1} \frac{x^{2}+5 x}{x^{4}+2}
$$

Finding a Limit by Canceling a Common Factor
$\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}$

Finding a Limit by Simplifying
$\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$

Finding a Limit by Rationalizing

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

Comparing Right and Left Limits: Show that
$\lim _{x \rightarrow 0}|x|=0$

Prove that
$\lim _{x \rightarrow 0} \frac{|x|}{x}=$ DNE

The Limit of a Piecewise Defined Function
$f(x)= \begin{cases}\sqrt{x-4} & \text { if } x>4 \\ 8-2 x & \text { if } x<4\end{cases}$
find:
$\lim _{x \rightarrow 4} f(x)$

