1) 56
2) ${ }^{s 1_{1}}=4,{ }^{s 2}=10,{ }^{s}{ }_{3}=16,{ }^{s} 4=22,{ }^{s 5}=28$
3) ${ }^{c} 1=4, c_{2}=8,{ }^{c} 3=\frac{\frac{64}{3}}{c^{\prime}} c_{4}=64, c_{5}=\frac{1024}{5}$
4) $a_{n}=2 n-3$
5) $a_{n}=(-1)^{n+1} \cdot 4 n$
6) ${ }^{a_{1}}=5, a_{2}=3, a_{3}=1, a_{4}=-1$
7) $3+4+5+\ldots+(n+2)$
8)

$\sum_{k=3}^{10} \mathrm{k}^{2}$
9) 15
10) $d=-5 ;{ }^{s_{1}}=4,{ }^{s_{2}}=-1,{ }^{s_{3}}=-6,{ }^{s_{4}}=-11$
11) ${ }^{a_{n}}=94-10 n ;{ }^{a_{8}}=14$
12) 220
13) ${ }^{a_{1}}=73, d=-5, a_{n}=a_{n-1}-5$
14) 34980
15) 4774
16) $\mathrm{r}=3 ;^{s_{1}}=3,{ }^{s_{2}}=9,{ }^{s_{3}}=27,{ }^{S_{4}}=81$
17) Geometric; $r=-3$
18) ${ }^{a_{5}}=2500 ;{ }^{a_{n}}=4 \cdot(5)^{n-1}$
19) ${ }^{a_{8}}=128$
20) $a_{n}=7 \cdot 2^{n-1}$
21) $a_{n}=3(3)^{n-1}$
22) 726
23) Converges; ${ }^{\frac{9}{2}}$
24) First we show that the statement is true when $n=1$.

For $\mathrm{n}=1$, we get $2==^{\frac{(1)}{2}}(3(1)+1)=2$.
This is a true statement and Condition I is satisfied.
Next, we assume the statement holds for some k. That is,

$$
2+5+8+\ldots+(3 k-1)=\frac{k}{2}(3 k+1)
$$ is true for

some positive integer k .
We need to show that the statement holds for $k+1$. That is, we need to show that

$$
\begin{aligned}
& 2+5+8+\ldots+(3(k+1)-1)=\frac{k+1}{2}(3(k+1)+1) \\
& 2+5+8+\ldots+(3 k-1)=\frac{k}{2}(3 k+1)
\end{aligned}
$$

So we assume that true and add the next term, $3(\mathrm{k}+1)-1$, to both sides of the equation.

$$
\begin{aligned}
2+5+8 & +\ldots+(3 k-1)+3(k+1)-1=^{\frac{k}{2}}(3 k+1)+3(k+1)- \\
& =\frac{\frac{1}{2}}{1}[k(3 k+1)+6(k+1)-2] \\
& =\frac{1}{2}\left(3 \mathrm{k}^{2}+\mathrm{k}+6 \mathrm{k}+6-2\right) \\
& =\frac{\frac{1}{2}}{\left(3 \mathrm{k}^{2}+7 \mathrm{k}+4\right)} \\
& =\frac{\frac{1}{2}}{(\mathrm{k}+1)(3 \mathrm{k}+4)} \\
& =\frac{\mathrm{k}+1}{2}(3 \mathrm{k}+3+1) \\
& =\frac{\mathrm{k}+1}{2}(3(\mathrm{k}+1)+1)
\end{aligned}
$$

Condition II is satisfied. As a result, the statement is true for all natural numbers n.
25) 10
26) $625 x^{4}-1000 x^{3}+600 x^{2}-160 x+16$
27) $972 x$

