1) 56 2) ${}^{s_1}=4$, ${}^{s_2}=10$, ${}^{s_3}=16$, ${}^{s_4}=22$, ${}^{s_5}=28$ 3) ${}^{c_1}=4$, ${}^{c_2}=8$, ${}^{c_3}=\frac{64}{3}$, ${}^{c_4}=64$, ${}^{c_5}=\frac{1024}{5}$ 4) a_n = 2n - 3 5) $a_n = (-1)^{n+1} \cdot 4n$ 6) $a_1 = 5$, $a_2 = 3$, $a_3 = 1$, $a_4 = -1$ 7) 3 + 4 + 5 + ... + (n + 2)8) $\sum_{k=3}^{10} k^2$ 9) 15 10) d = -5; 51 = 4, 52 = -1, 53 = -6, 54 = -11 11) $a_n = 94 - 10n; a_8 = 14$ 12) 220 13) $a_1 = 73$, d = -5, $a_n = a_{n-1} - 5$ 14) 34980 15) 4774 16) r = 3; ${}^{51} = 3$, ${}^{52} = 9$, ${}^{53} = 27$, ${}^{54} = 81$ 17) Geometric; r = -3 18) $a_5 = 2500; a_n = 4.(5)^{n-1}$ 19) ^{a8}=128 20) $a_{n} = 7 \cdot 2^{n-1}$ 21) $a_{n=3}(3)^{n-1}$ 22) 726 23) Converges; $\overline{2}$

24) First we show that the statement is true when n = 1.

For n = 1, we get 2 = $\frac{\sqrt{2}}{2}$ (3(1) + 1) = 2. This is a true statement and Condition I is satisfied.

Next, we assume the statement holds for some k. That is,

$$2+5+8+...+(3k-1) = \frac{k}{2}(3k+1)$$
 is true for

some positive integer k.

We need to show that the statement holds for k + 1. That is, we need to show that

$$2+5+8+...+(3(k+1)-1) = \frac{k+1}{2}(3(k+1)+1).$$

2+5+8+...+(3k-1) = $\frac{k}{2}(3k+1)$
is sume that

So we assume that

true and add the next term, 3(k + 1) - 1, to both sides of the equation.

$$2 + 5 + 8 + ... + (3k - 1) + 3(k + 1) - 1 = \frac{k}{2}(3k + 1) + 3(k + 1) - 1$$

$$= \frac{1}{2}[k(3k + 1) + 6(k + 1) - 2]$$

$$= \frac{1}{2}(3k^{2} + k + 6k + 6 - 2)$$

$$= \frac{1}{2}(3k^{2} + 7k + 4)$$

$$= \frac{1}{2}(k + 1)(3k + 4)$$

$$= \frac{k + 1}{2}(3k + 3 + 1)$$

$$= \frac{k + 1}{2}(3(k + 1) + 1)$$

Condition II is satisfied. As a result, the statement is true for all natural numbers n.

25) 10 26) $625x^4 - 1000x^3 + 600x^2 - 160x + 16$ 27) 972x