Precalculus

Lesson 12.1: Sequences

Mrs. Snow, Instructor

A sequence is a function f whose domain is the set of positive integers. The values $f(1), f(2), f(3), \ldots$ are called terms.

For Example:

$$
-2, \quad 4, \quad 6, \quad 8, \quad \ldots \quad, 2 n
$$

Since we are talking about a function, we can graph sequences.
Write down the first six terms of the following sequence and graph it.
$\left\{a_{n}\right\}=\left\{\frac{n-1}{n}\right\}$

Write down the first six terms of the following sequence and graph it.
$\left\{b_{n}\right\}=\left\{(-1)^{n+1}\left(\frac{2}{n}\right)\right\}$

Write down the first six terms of the following sequence and graph it.
$\left\{c_{n}\right\}=\binom{n$ if n is even }{$\frac{1}{n}$ if n is odd }

Determining a Sequence from a Pattern

Number the terms and see what happens between each term:
(a) $e, \frac{e^{2}}{2}, \frac{e^{3}}{3}, \frac{e^{4}}{4}, \ldots$
(b) $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$
(c) $1,3,5,7, \ldots$
(d) $1,4,9,16,25, \ldots$
(e) $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}, \ldots$

Factorial

A factorial is a non negative integer written with an exclamation mark. If $n \geq 0$ is an integer, the factorial is defined as follows:

$$
\begin{gathered}
0!=1 \quad \text { and } 1!=1 \\
n!=n(n-1) \cdot \ldots . \cdot 3 \cdot 2 \cdot 1 \quad \text { for } n \geq 2
\end{gathered}
$$

and.....

$$
n!=n(n-1)!
$$

```
Solve:
9!
12!
10!
3!7!
    4!
```


A Sequence Defined by a Recursive Formula

A second way of defining a sequence is to assign a value to the first term and specify the nth term by a formula or equation that involves on or more of the terms preceding it. The sequence is defined recursively, and the formula is a recursive formula.

Write the first 5 terms of the recursive sequence

$$
u_{1}=1, u_{2}=1, u_{n}=u_{n-2}+u_{n+1}
$$

Sigma Notation: a short cut notation to indicate the sum of some or all of the terms of a sequence.

Given a sequence

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots a_{n}
$$

we can write the sum of the first n terms using summation notation, or sigma notation. The notation derives its name from the Greek Letter $\boldsymbol{\Sigma}$. This corresponds to our S for "sum." The following notation is used

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots a_{n}
$$

k is called the index of summation, it is basically the starting number for the sequence.

| $\sum_{k=1}^{\text {Write out each sum }} \frac{1}{k}$ $\sum_{k=1}^{n} k!$

 Express each sum using summation notation
 $1^{2}+2^{2}+3^{2}+\cdots+9^{2}$ $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n-1}}$ |
| :--- | :--- |

The following sums are natural consequences of properties of the real numbers. These are useful for adding terms of a sequence algebraically:

Properties of Sequences

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences and c is a real number, then:
$\sum_{k=1}^{n}\left(c a_{k}\right)=c a_{1}+c a_{2}+\cdots+c a_{n}=c\left(a_{1}+a_{2}+\cdots+a_{n}\right)=c \sum_{k=1}^{n} a_{k}$
$\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
$\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n} b_{k}$
$\sum_{k=j+1}^{n} a_{k}=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{j} a_{k}, \quad$ where $0<j<n$

The formulas for sums of powers of the first n natural numbers are important in calculus:

Formulas for Sums of Sequences

$$
\begin{aligned}
& \sum_{k=1}^{n} c=\underbrace{c+c+\cdots+c}_{n+e r m s}=c n \quad c \text { is a real number } \\
& \sum_{k=1}^{n} k=1+2+3+\cdots+n=\frac{n(n+1)}{2} \\
& \sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
\end{aligned}
$$

Find the sums:
$\sum_{k=1}^{5}(3 k)$

$$
\sum_{\sum=0}^{20}\left(4 k^{2}\right)
$$

