Precalculus

Lesson 10.4: The Hyperbola

Mrs. Snow, Instructor

A hyperbola is the collection (locus) of all points In the plane, the difference of whose distances from two fixed points, called the foci, is a constant.

Equation of a Hyperbola Centered about the origin with Transverse Axis along the x-axis

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& b^{2}=c^{2}-a^{2}
\end{aligned}
$$

center at $(0,0)$; foci at $(\pm c, 0)$; and vertices at $(\pm a, 0)$
two oblique asymptotes: $y= \pm \frac{b}{a} \boldsymbol{x}$
Find an equation of the hyperbola with center at the origin, one focus at $(3,0)$ and one vertex at $(-2,0)$. Graph

Analyze the equation; find the center, transverse axis, vertices, and foci. Graph. $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$

Equation of a Hyperbola; Center at (0,0); Transverse Axis along the y -axis

$$
\begin{aligned}
& \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 \\
& b^{2}=c^{2}-a^{2}
\end{aligned}
$$

center at (0,0); foci at $(0, \pm \boldsymbol{c})$; and vertices at $(0, \pm \boldsymbol{a})$
two oblique asymptotes: $y= \pm \frac{a}{b} x$

Analyze the equation, find the center, transverse axis, vertices, and foci and graph:

$$
y^{2}-4 x^{2}=4
$$

Find an equation of the hyperbola having one vertex at $(0,2)$ and foci at $(0,-3)$ and $(0,3)$. Graph.

Analyze the equation, find the center, transverse axis, vertices, foci, and asymptotes and graph: $9 x^{2}-4 y^{2}=36$

Hyperbolas at a center of (h,k)

Opens	Opens left and right Transverse axis x-axis	Opens up and down Transverse axis y-axis
Form:	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Center:	(h, k)	(h, k)
Vertices	$\pm \frac{b}{a}$	$(h, k+a) a n d(h, k-a)$
Slope of Asymptotes	$y-k= \pm \frac{b}{a}(x-h)$	$y-k= \pm \frac{a}{b}(x-h)$
Equation of Asymptotes	$(h+c, k),(h-c, k))$	$(h, k+c),(h, k-c)$
Foci $a^{2}+b^{2}=c^{2}$		

Find an equation for the hyperbola with center at $(1,-2)$, one focus at $(4,-2)$, and one vertex at $(3,-2)$. Graph the equation by hand.

