Precalculus

Lesson 10.1 and 10.2: Conics and the Parabola

Mrs. Snow, Instructor

Conic sections are curves that result from the intersection of a cone and a plane. We will be looking at the parabola, ellipse and the hyperbola.

Parabola: A collection, or locus, of all points P in the plane that are the same distance from a fixed point as they are from a fixed line. The point F is the focus and the line is its directrix.

these distances are equal:

$$
d(F, P)=d(P, D)
$$

For the parabola that opens along the x -axis:

$$
y^{2}=4 a x
$$

where:
vertex at $(0,0), \quad$ focus at $(a, 0)$, " a "is the distance from the vertex to the focus of a parabola

A parabola will open onto the positive or negative x - or y-axes:
Equations of a Parabola, Vertex at $(0,0)$ and the Focus is on an Axis

vertex	focus	directrix	equation	description
$(0,0)$	$(a, 0)$	$x=-a$	$y^{2}=4 a x$	opens on the positive x-axis
$(0,0)$	$(-a, 0)$	$x=a$	$y^{2}=-4 a x$	opens on the negative x-axis
$(0,0)$	$(0, a)$	$y=-a$	$x^{2}=4 a y$	opens on the positive y-axis
$(0,0)$	$(0,-a)$	$y=a$	$x^{2}=-4 a y$	opens on the negative y-axis

(a) $y^{2}=4 a x$

(b) $y^{2}=-4 a x$

(c) $x^{2}=4 a y$

(d) $x^{2}=-4 a y$

Analyze the Equation of a Parabola

| Analyze the equation: $y^{2}=8 x$ |
| :--- | :--- |
| analyze??? (find the vertex, focus and |
| directrix and graph) |

| Analyze the equation: $x^{2}=-12 y$ |
| :--- | :--- |
| (find the vertex, focus and directrix and |
| graph) |\quad and graph:

Graphing and Finding Equations of Parabolas
Find an equation of a parabola with a vertex
at (0,0) and a focus at (3,0). Graph the
equation
Find an equation of a parabola with a focus at

Find the equation of the parabola with vertex at $(0,0)$ if its axis of symmetry is the x-axis and its graph contains the point $\left(-\frac{1}{2}, 2\right)$

And yes, parabolas may be translated:
Equations of a Parabola; Vertex at (h, k); Axis of Symmetry Parallel to a Coordinate Axis

vertex	focus	directrix	equation	description
(h, k)	$(h+a, k)$	$x=h-a$	$(y-k)^{2}=4 a(x-h)$	opens right
(h, k)	$(h-a, k)$	$x=h+a$	$(y-k)^{2}=-4 a(x-h)$	opens left
(h, k)	$(h, k+a)$	$y=k-a$	$(x-h)^{2}=4 a(y-k)$	opens up
(h, k)	$(h, k-a)$	$y=k+a$	$(x-h)^{2}=-4 a(y-k)$	opens down

(a) $(y-k)^{2}=4 a(x-h)$

(b) $(y-k)^{2}=-4 a(x-h)$

(c) $(x-h)^{2}=4 a(y-k)$

(d) $(x-h)^{2}=-4 a(y-k)$

Finding the Equation of a Parabola, Vertex Not at the Origin

Find an equation of the parabola with vertex at $(-2,3)$ and focus at $(0,3)$. Graph.	

Analyzing the Equation of a Parabola, (find the vertex, focus and directrix and graph)
$x^{2}+4 x-4 y=0$

