ALL PROBLEMS MUST BE DONE ON SEPARATE PAPER OTHERWISE; THE REVIEW WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT. REVIEW IS DUE ON TEST DAY.

Convert the angle to $D^{\circ} M^{\prime} S^{\prime \prime}$ form. Round the answer to the nearest second.

1) 178.53°

Convert the angle to a decimal in degrees. Round the answer to two decimal places.
2) $21^{\circ} 17^{\prime} 34^{\prime \prime}$

If s denotes the length of the arc of a circle of radius r subtended by a central angle $\boldsymbol{\theta}$, find the missing quantity.
3) $r=24.32$ centimeters, $\theta=3.4$ radians, $s=$?
4) $r=\frac{1}{4}$ feet, $s=6$ feet, $\theta=$?

Convert the angle in degrees to radians. Express the answer as multiple of π.
5) 90°
6) 135° Convert the angle in radians to degrees.
7) $\frac{12 \pi}{7}$
8) $\frac{\pi}{3}$

Convert the angle in degrees to radians. Express the answer as multiple of π.
9) 6°

If A denotes the area of the sector of a circle of radius r formed by the central angle θ, find the missing quantity. If necessary, round the answer to two decimal places.
10) $\mathrm{r}=20$ inches, $\theta=\frac{\pi}{3}$ radians, $\mathrm{A}=$?
11) $\theta=\frac{\pi}{3}$ radians, $\mathrm{A}=75$ square meters, $\mathrm{r}=$?
12) $\theta=\frac{\pi}{6}$ radians, $\mathrm{A}=62$ square meters, $\mathrm{r}=$?
13) $\mathrm{r}=16$ inches, $\theta=\frac{\pi}{4}$ radians, $\mathrm{A}=$?

Solve the problem.
14) A circle has a radius of 5 centimeters. Find the area of the sector of the circle formed by an angle of 25° If necessary, round the answer to two decimal places.
15) An irrigation sprinkler in a field of lettuce sprays water over a distance of 40 feet as it rotates through an angle of 160°. What area of the field receives water? If necessary, round the answer to two decimal places.
16) A gear with a radius of 2 centimeters is turning at $\frac{\pi}{5}$ radians $/ \mathrm{sec}$. What is the linear speed at a point on the outer edge of the gear?
17) A gear with a radius of 8 centimeters is turning at $\frac{\pi}{11}$ radians/sec. What is the linear speed at a point on the outer edge of the gear?
18) An object is traveling around a circle with a radius of 10 meters. If in 15 seconds a central angle of 3 radians is swept out, what is the linear speed of the object?

In the problem, t is a real number and $P=(x, y)$ is the point on the unit circle that corresponds to t.
Find the exact value of the indicated trigonometric function of t.
19) $\left(\frac{3}{8}, \frac{\sqrt{55}}{8}\right)$ Find $\sin t$.
20) $\left(\frac{2}{5}, \frac{\sqrt{21}}{5}\right)$ Find tan t.

Find the exact values. Do not use a calculator.
21) $\cos \frac{\pi}{2}$
22) $\cos 0$
23) $\csc -\frac{\pi}{2}$
25) $\csc 45^{\circ}$
26) $\cot 45^{\circ}$
27) $\cos 60^{\circ}$
29) $\cos 60^{\circ}+\tan 60^{\circ}$
30) $\cos \frac{10 \pi}{3}$
31) $\cos \frac{\pi}{3}+\tan \frac{5 \pi}{3}$

Use a calculator to find the approximate value of the expression rounded to two decimal places.
32) $\sin 48^{\circ}$
33) $\sec \frac{\pi}{12}$

A point on the terminal side of an angle θ is given. Find the exact value of the indicated trigonometric function of θ. 34) $(5,-12) \quad$ Find $\sin \theta$. 35) $(5,-4) \quad$ Find $\tan \theta$.
36) $(5,12) \quad$ Find $\cos \theta$.

1) $178^{\circ} 31^{\prime} 48^{\prime \prime}$
2) 21.29°
3) 82.7 cm
4) 24 radians
5) $\frac{\pi}{2}$
() $\frac{3 \pi}{4}$
6)
7) 308.57°
8) 60°
9) $\frac{\pi}{30}$
10) $209.33 \mathrm{in}^{2}$
11) 11.97 m
12) 15.39 m
13) $100.48 \mathrm{in}^{2}$
14) $5.45 \mathrm{~cm}^{2}$
15) $2234.02 \mathrm{ft}^{2}$
16) $\frac{\frac{2 \pi}{5}}{\mathrm{~cm} / \mathrm{sec}}$
17) $\frac{\frac{8 \pi}{11}}{\mathrm{~cm} / \mathrm{sec}}$
18) $2 \mathrm{~m} / \mathrm{sec}$
$\frac{\sqrt{55}}{8}$
19)

$\frac{\sqrt{21}}{2}$
20)
21) 0
22) 1
23) -1
24) $\sqrt{2}$
25) $\sqrt{2}$
26) 1
27) $\frac{1}{2}$
28) $\frac{2 \sqrt{3}}{3}$
29) $\frac{1+2 \sqrt{3}}{2}$
30) - $\frac{1}{2}$
31) $\frac{1-2 \sqrt{3}}{2}$
32) 0.74
33) 1.04
34) - $\frac{12}{13}$
35) $-\frac{4}{5}$
35) -
36) $\frac{5}{13}$

