Precalculus Lesson 5.4: Logarithmic Functions Mrs. Snow, Instructor

The inverse of an exponential function is a logarithmic function.

Let <i>a</i> be a positive number with a not equal to 1. The logarithmic function with base a is defined by:				
$log_a x = y$ if and only if $a^y = x$				
Domain: $(0, \infty)$ translation: whatever you are taking the log of has to be greater than zero Range: $(-\infty, \infty)$				
start with the base and move in a counterclockwise fashion.				
Write as an exponential $log_a 4 = 5$	$log_e b = -3$		$log_3 5 = c$	
Write as a logarithm $1.2^3 = m$	$e^b = 9$		$a^4 = 24$	
Find the exact value: log ₂ 16		$log_3 \frac{1}{27}$		
Find the domain of each logarithmic function: $f(x) = log_2(x + 3)$		$g(x) = \log_5 \left(\frac{1+x}{1-x}\right)$		

Graphing Logarithmic Functions

Knowing the general form of the graph of the log function is a short cut for graphing.

- 1. Write in its equivalent exponential form
- 2. Find the inverse; *x* is *y* and *y* is *x*, solve for *y*
- 3. Graph the log function's inverse, and reflect the exponential graph across the line of symmetry y = x.

The Natural and Common Logarithm

The Natural Logarithm is a logarithm with the base e. It is written with the abbreviation of ln.

$$y = \ln x$$

if and only if $x = e^y$

The logarithm with base 10 is called the **common logarithm** and is denoted by omitting the base:

$$\log x = \log_{10} x$$

Graph, determine the domain, range and vertical asymptote. Identify the inverse and the domain and range of the inverse.

 $f(x) = -\ln(x-2)$

Solving Logarithmic Equations

$log_3(4x-7) = 2$	$log_x 64 = 2$

 $e^{2x} = 5$