Precalculus

Lesson 5.4: Logarithmic Functions

Mrs. Snow, Instructor

The inverse of an exponential function is a logarithmic function.

Let a be a positive number with a not equal to 1 . The logarithmic function with base a is defined by:

$$
\log _{a} x=y
$$

if and only if

$$
a^{y}=x
$$

Domain: $(0, \infty)$
translation: whatever you are taking the log of has to be greater than zero
Range: $(-\infty, \infty)$
start with the base and move in a counterclockwise fashion.

Graphing Logarithmic Functions

Knowing the general form of the graph of the log function is a short cut for graphing.

1. Write in its equivalent exponential form
2. Find the inverse; x is y and y is x, solve for y
3. Graph the log function's inverse, and reflect the exponential graph across the line of symmetry $y=x$.

Graph, determine the domain, range and vertical asymptote.
$\log _{1 / 3} x$

The Natural and Common Logarithm
The Natural Logarithm is a logarithm with the base e. It is written with the abbreviation of $l n$.

$$
\begin{gathered}
y=\ln x \\
\text { if and only if } \quad x=e^{y}
\end{gathered}
$$

The logarithm with base 10 is called the common logarithm and is denoted by omitting the base:

$$
\log x=\log _{10} x
$$

Graph, determine the domain, range and vertical asymptote. Identify the inverse and the domain and range of the inverse.

$$
f(x)=-\ln (x-2)
$$

Solving Logarithmic Equations
$\log _{3}(4 x-7)=2$

Using Logarithms to Solve and Exponential Equation

$$
e^{2 x}=5
$$

