Precalculus

Lesson 5.2: One to One Functions; Inverse Functions

Mrs. Snow, Instructor

A quick definition review: A function is a special relation for which every element of the domain corresponds to exactly one element of the range. Now, for a function to be considered one-toone or it may be written as "1-1," it must also meet the following criteria: every element of the range corresponds to exactly one element of the domain. Another way to look at this is that each \boldsymbol{x} in the domain has one and only one corresponding point in the range.

A function is one-to-one if any two different inputs in the domain correspond to two different outputs in the range. That is

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { for } x_{1} \neq x_{2}
$$

Graphically we can determine a one-to-one relationship by using the horizontal-line-test to determine of f is one-to-one. Basically, this is analogous to the vertical line test, only horizontal.

Horizontal-line Test

If every horizontal line intersects the graph of a function f in at most one point, then f is one-to-one.

Using the graph of the function to determine if the functions are 1-1
(a) $f(x)=x^{2}$
(b) $g(x)=x^{3}$

Inverses: Another way of saying inverse is opposite. Did you ever play "opposite day" with your parents? If you remember you probably would not confess it; Yes means No and No means Yes! Mathematically: x is y and y is x.
$f(x)$ and $g(x)$ are inverses if and only if:

$$
f(g(x))=x \quad \text { and } \quad g(f(x))=x
$$

Suppose that f is a one-to-one function. Then, to each x in the domain of f, there is exactly one y in the range (because f is a function); and to each y in the range of f, there is exactly one x in the domain (because f is one-to-one). The correspondence from the range of f back to the domain of f is called the inverse function of f. The symbol f^{-1} is used to denote the inverse of f.

Find the inverse of the following one-to-one function:

$$
\{(-3,-27),(-2,-8),(-1,-1),(0,0),(1,1),(2,8),(3,27)\}
$$

(a) Verify that the inverse of $g(x)=x^{3}$ is $g^{-1}(x)=\sqrt[3]{x}$.
(b) Verify that the inverse of $f(x)=2 x+3$ is $f^{-1}(x)=\frac{1}{2}(x-3)$.

Verify that the inverse of $f(x)=\frac{1}{x-1}$ is $f^{-1}(x)=\frac{1}{x}+1$. For what values of x is $f^{-1}(f(x))=x$? For what values of x is $f\left(f^{-1}(x)\right)=x$?

Find the inverse of $f(x)=2 x+3$. Graph f and f^{-1} on the same coordinate axes.

The following function is one-to-one. Find its inverse and check the result.

$$
f(x)=\frac{2 x+1}{x-1}, x \neq 1
$$

By restricting the domain of a function that is not 1-1, we can make the function 1-1 and find its inverse.

Find the inverse of $y=f(x)=x^{2}$ if $x \geq 0$. Graph f and f^{-1}.

