Precalculus

Lesson 5.1: Composite Functions

Mrs. Snow, Instructor

Composite Functions: A composite function is a function that is made or composed of more than one "independent" function. In general, a number x is applied to one function the result or output is then applied to a second function.

Given two functions f and g, the composite function, denoted by $f \circ g$ (read as " f composed with $g "$), is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that $g(x)$ is in the domain of f.

Domain of a composite:
The domain of a composite function, $f \circ g$, if defined whenever both $g(x)$ and $f(g(x))$ are defined.

Evaluating a composite function

Suppose that $f(x)=2 x^{2}-3$ and $g(x)=4 x$. Find:
(a) $(f \circ g)(1)$
(b) $(g \circ f)(1)$
(c) $(f \circ f)(-2)$
(d) $(g \circ g)(-1)$

Finding a composite function and its domain
Suppose that $f(x)=x^{2}+3 x-1$ and $g(x)=2 x+3$.
Find: (a) $f \circ g \quad$ (b) $g \circ f$
Then find the domain of each composite function.

Suppose that $f(x)=\frac{1}{x+2}$ and $g(x)=\frac{4}{x-1}$.
Find: (a) $f \circ g \quad$ (b) $f \circ f$
Then find the domain of each composite function.

Show that two composite functions are equal
If $f(x)=3 x-4$ and $g(x)=\frac{1}{3}(x+4)$, show that

$$
(f \circ g)(x)=(g \circ f)(x)=x
$$

for every x in the domain of $f \circ g$ and $g \circ f$.

Finding the components of a composite function
Find functions f and g such that $f \circ g=H$ if $H(x)=\left(x^{2}+1\right)^{50}$.

Find functions f and g such that $f \circ g=H$ if $H(x)=\frac{1}{x+1}$.

