Precalculus Lesson 5.1: Composite Functions Mrs. Snow, Instructor

Composite Functions: A composite function is a function that is made or composed of more than one "independent" function. In general, a number *x* is applied to one function the result or output is then applied to a second function.

Given two functions f and g, the **composite function**, denoted by $f \circ g$ (read as "f composed with g"), is defined by

 $(f \circ g)(x) = f(g(x))$

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f.

Domain of a composite:

The domain of a composite function, $f \circ g$, if defined whenever both g(x) and f(g(x)) are defined.

Evaluating a composite function

Suppose that
$$f(x) = 2x^2 - 3$$
 and $g(x) = 4x$. Find:
(a) $(f \circ g)(1)$ (b) $(g \circ f)(1)$ (c) $(f \circ f)(-2)$ (d) $(g \circ g)(-1)$

Finding a composite function and its domain

Suppose that $f(x) = x^2 + 3x - 1$ and g(x) = 2x + 3. Find: (a) $f \circ g$ (b) $g \circ f$

Then find the domain of each composite function.

Suppose that $f(x) = \frac{1}{x+2}$ and $g(x) = \frac{4}{x-1}$. Find: (a) $f \circ g$ (b) $f \circ f$

Then find the domain of each composite function.

If
$$f(x) = 3x - 4$$
 and $g(x) = \frac{1}{3}(x + 4)$, show that
 $(f \circ g)(x) = (g \circ f)(x) = x$

for every x in the domain of $f \circ g$ and $g \circ f$.

Finding the components of a composite function

Find functions f and g such that $f \circ g = H$ if $H(x) = (x^2 + 1)^{50}$.

Find functions f and g such that $f \circ g = H$ if $H(x) = \frac{1}{x+1}$.