Precalculus

Lesson: 4.3 Complex Zeros; Fundamental Theorem of Algebra

Mrs. Snow, Instructor

Not all quadratic equations have real solutions. If we look at the complex number system, every quadratic equation has at least one solution; note rational and irrational roots are in fact complex numbers. We just don't write them in the complex form. The fact that each polynomial function will have a complex brings about an important theorem.

Fundamental Theorem of Algebra.

Every complex polynomial function $f(x)$ of degree $n \geq 1$ has at least one complex zero.

Another important theorem states that if we have the solution $a+b i$ then we must also have the solution $a-b i$.

Conjugate Pairs Theorem.

Let $f(x)$ be a polynomial function whose coefficients are real numbers. If $r=a+b i$ is a zero of f, the complex conjugate $\bar{r}=a-b i$ is also a zero of f.

Using the Conjugate Pairs Theorem
A polynomial function f of degree 5 whose coefficients are real numbers has the zeros $1,5 i$, and $1+i$. Find the remaining two zeros.
(a) Find a polynomial function f of degree 4 whose coefficients are real numbers and that has the zeros 1,1 , and $-4+i$.
(b) Graph the function found in part (a) to verify your result.

Find the complex zeros of the polynomial function:

$$
f(x)=3 x^{4}+5 x^{3}+25 x^{2}+45 x-18
$$

