Precalculus Lesson 2.5: Graphing Techniques: Transformations Lesson 2.6: Mathematical Models: Building Functions Mrs. Snow, Instructor

Transformations of Graphs

What we learned in Algebra II, y = af(x - h) + k may be expanded one step further to include a horizontal stretch or compression. From the textbook is the table below:

To Graph:	Draw the Graph of f and:	Functional Change to f(x)
Vertical shifts		
y = f(x) + k, k > 0	Raise the graph of f by k units.	Add k to $f(x)$.
y = f(x) - k, k > 0	Lower the graph of f by k units.	Subtract k from $f(x)$.
Horizontal shifts		
y = f(x+h), h > 0	Shift the graph of f to the left h units.	Replace x by $x + h$.
y = f(x - h), h > 0	Shift the graph of f to the right h units.	Replace x by $x - h$.
Compressing or stretching		
y = af(x), a > 0	Multiply each y-coordinate of $y = f(x)$ by a. Stretch the graph of f vertically if $a > 1$. Compress the graph of f vertically if $0 < a < 1$.	Multiply $f(x)$ by a .
y = f(ax), a > 0	Multiply each x-coordinate of $y = f(x)$ by $\frac{1}{a}$. Stretch the graph of f horizontally if $0 < a < 1$. Compress the graph of f horizontally if $a > 1$.	Replace <i>x</i> by <i>ax</i> .
Reflection about the x-axis		
y = -f(x)	Reflect the graph of f about the x-axis.	Multiply $f(x)$ by -1 .
Reflection about the y-axis		
y = f(-x)	Reflect the graph of f about the y-axis.	Replace x by $-x$.

Determine the Function Obtained from a Series of Transformations

Given the parent funcitonL: y = |x|

1. Shift left 2 units 2) Shift up 3 units. 3) Reflected about the y-axis.

Graphing Using Transformations (what is the parent function?)
$$f(x) = \frac{3}{x-2} + 1$$

 $f(x) = \sqrt{1 - x} + 2$

Lesson 2.6

Real-world problems often result in mathematical models that involve functions. Using the information given, we can draw a picture of what the situation looks like and then translate the situation into a mathematical equation to solve. AND!! Calculators often make calculating the solutions easier.

Find the distance from the point P to O the origin. P = (x, y) is a point on teh graph of $y = x^2 - 1$ a) Express the distance d from P to the origin O as a function of x b) What is d, if x = 0? c) What is d if x = 1? d) What is d if $x = \frac{\sqrt{2}}{2}$? e) Graph the function d = d(x) for $x \ge 0$ round 2 decimal places, find the local minimum

A rectangle has one corner in quadrant I on the graph of $y = 25 - x^2$, anothat the origin, a third on the positive y-axis, and a fourth on the positive x-axis. WHAT??? Well, draw a picture!	her YES! is.
 a) Express the area A of the rectangle as a function of x b) What is the domain of A? c) Graph A = A(t) d) Semulating the area largest? 	
d) For what values of x is the area largest?	
Suppose two planes flying at the same altitude are headed toward each oth One plane is flying due South at a groundspeed of 400 MPH and is 600 miles from the potential intersection point of the planes. The other plane is flying due West with a groundspeed of 250 MPH and is 400 miles from the potent intersection point of the planes. ???	er. Remember g ial draw a picture.
 a) Build a model that expresses the distance d between the planes as a funct b) Use a calculator to graph d = d(t) How close do the planes come to each other? 	ion of time <i>t.</i>
At what time are the planes the closest:	