Precalculus

Lesson 2.5: Graphing Techniques: Transformations
 Lesson 2.6: Mathematical Models: Building Functions

Mrs. Snow, Instructor

Transformations of Graphs

What we learned in Algebra II, $y=a f(x-h)+k$ may be expanded one step further to include a horizontal stretch or compression. From the textbook is the table below:

SUMMARY OF GRAPHING TECHNIQUES

To Graph:	Draw the Graph of \boldsymbol{f} and:	Functional Change to $\boldsymbol{f}(\boldsymbol{x})$
Vertical shifts		
$y=f(x)+k, \quad k>0$	Raise the graph of f by k units.	Add k to $f(x)$.
$y=f(x)-k, \quad k>0$	Lower the graph of f by k units.	Subtract k from $f(x)$.

Horizontal shifts

$$
\begin{aligned}
& y=f(x+h), \quad h>0 \quad \text { Shift the graph of } f \text { to the left } h \text { units. } \quad \text { Replace } x \text { by } x+h . \\
& y=f(x-h), \quad h>0 \quad \text { Shift the graph of } f \text { to the right } h \text { units. } \quad \text { Replace } x \text { by } x-h \text {. }
\end{aligned}
$$

Compressing or stretching

$$
y=a f(x), \quad a>0
$$

Multiply each y-coordinate of $y=f(x)$ by a.
Multiply $f(x)$ by a. Stretch the graph of f vertically if $a>1$. Compress the graph of f vertically if $0<a<1$.

$$
\begin{aligned}
& y=f(a x), \quad a>0 \quad \text { Multiply each } x \text {-coordinate of } y=f(x) \text { by } \frac{1}{a} . \quad \text { Replace } x \text { by } a x . \\
& \text { Stretch the graph of } f \text { horizontally if } 0<a<1 . \\
& \text { Compress the graph of } f \text { horizontally if } a>1 .
\end{aligned}
$$

Reflection about the x-axis

$$
y=-f(x) \quad \text { Reflect the graph of } f \text { about the } x \text {-axis. } \quad \text { Multiply } f(x) \text { by }-1 .
$$

Reflection about the \boldsymbol{y}-axis

$y=f(-x)$
Reflect the graph of f about the y-axis.
Replace x by $-x$.

Determine the Function Obtained from a Series of Transformations
Given the parent funcitonL: $y=|x|$

1. Shift left 2 units 2) Shift up 3 units. 3) Reflected about the y-axis.

Graphing Using Transformations (what is the parent function?)
$f(x)=\frac{3}{x-2}+1$

$$
f(x)=\sqrt{1-x}+2
$$

Lesson 2.6

Real-world problems often result in mathematical models that involve functions. Using the information given, we can draw a picture of what the situation looks like and then translate the situation into a mathematical equation to solve. AND!! Calculators often make calculating the solutions easier.

Find the distance from the point P to O the origin.
$P=(x, y)$ is a point on teh graph of $y=x^{2}-1$
a) Express the distance d from P to the origin O as a function of x
b) What is d, if $x=0$?
c) What is d if $x=1$?
d) What is d if $x=\frac{\sqrt{2}}{2}$?
e) Graph the function $d=d(x)$ for $x \geq 0$ round 2 decimal places, find the local minimum

A rectangle has one corner in quadrant I on the graph of $y=25-x^{2}$, another at the origin, a third on the positive y -axis, and a fourth on the positive x -axis.
WHAT??? Well, draw a picture!
a) Express the area A of the rectangle as a function of x
b) What is the domain of A ?
c) Graph $A=A(t)$
d) For what values of x is the area largest?

Suppose two planes flying at the same altitude are headed toward each other.
One plane is flying due South at a groundspeed of 400 MPH and is 600 miles from the potential intersection point of the planes. The other plane is flying due West with a groundspeed of 250 MPH and is 400 miles from the potential intersection point of the planes. ???
draw a picture.
a) Build a model that expresses the distance d between the planes as a function of time t.
b) Use a calculator to graph $d=d(t)$

How close do the planes come to each other?
At what time are the planes the closest?

