Precalculus

Lesson 1.2 - Exponents and Radicals

Mrs. Snow, Instructor

The key points of this section are to review rules of exponents.
$>$ Definition of a radical: If $\sqrt{a}=b$, then $a=b^{2} ;$ for $b \geq 0 . \quad \therefore \sqrt[n]{a}=b$, then $a=b^{n}$.
$>$ No radicals in the denominator. The denominator must be multiplied by a value such that the radical may be simplified. Remember! When dealing with a fraction, the value of the fraction must not be changed. You can only multiply by 1. If the denominator has a square root, then multiply by 1 such that the square root in the denominator becomes a perfect square and may be simplified.
EXAMPLES:

$\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{\sqrt{4}}=\frac{\sqrt{2}}{2}$	$\frac{3}{\sqrt{18}}=$	
$\frac{3}{\sqrt{5}}=$	$\frac{2}{\sqrt[3]{3}}=$	

$>$ Anything raised to the power of zero is equal to 1: $a^{0}=1$
$>$ Negative exponents may be simplified by taking the reciprocal and changing the exponent to positive:

$$
a^{-n}=\frac{1}{a^{n}} ; \quad \text { remember }: \text { opposite side }, \text { opposite sign }
$$

> Laws of Exponents found on page 14 must be reviewed and understood

Scientific Notation found on page 16 must also be reviewed and understood

