LINEAR TAKS Part 1

NAME AND CLASS PERIOD _____

1. Which of the following sets does not represent a function? F $\{(-1, -1), (1, 1), (2, 2), (3, 3), (4, 4)\}$ G $\{(-1, 0), (0, 2), (1, 4), (2, 6), (3, 8)\}$ H $\{(-1, 2), (1, 1), (1, -1), (2, 1), (4, 2)\}$ J $\{(-2, 4), (-1, 1), (1, 1), (2, 4), (3, 9)\}$	 y depends on x. h = 3q + 4 even when it is not an x-y format, you can count on the fact that the left depends on the right so, h depends on q h is dependent and q is independent numbers are not dependent only variables!
2. A graph is not a function unless all the values are different. NO REPEATERS. The graph must pass the Line Test in order to be classified as a function.	
3. Which mapping best represents the function $y = 2x^2 + 1$ when the replacement set for x is $\{-1, 0, 3\}$? A $\begin{pmatrix} x & y \\ 0 & -1 \\ 0 & -1 \\ 0 & -1 \\ 3 & -37 \end{pmatrix}$ C $\begin{pmatrix} x & y \\ -1 & -1 \\ 0 & -1 \\ 3 & -19 \end{pmatrix}$ B $\begin{pmatrix} x & y \\ 1 & -1 \\ 0 & -1 \\ $	You have an equation, use the y= programcheck table to see which is the correct set.
 4.DOMAN AND RANGE If (x, -4) is a solution to the equation 4x - 5y = 8, what is the value of x? A -4.8 B -3 C 1.6 D 7 	Anytime you see a coordinate point, there is an x and y . Here you need to find x . You have a y value so, substitute -4 for y and solve for x .

y = mx + b

24.	
Casey conducted an experiment and recorded the data in the table shown below.	Why is this table of values not a linear function?
3 5	
4 10	
25.	
A sporting-goods store sold a total of 80 backpacks at the beginning of a new school year. Each backpack sold for either \$35 or \$50, not including tax. If x represents the number of \$35 backpacks the store sold, which expression represents the total amount of money in dollars from the sales of the two kinds of backpacks, not including tax?	If 80 is the total backpacks and x is the \$35 backpack, how can we write the number of \$50 backpacks in terms of 80 and \$35? () We will multiply this by \$
F $35x + 50(x - 80)$	
G $50x + 35(80 - x)$	
H $35x + 50(80 - x)$	
J $50x + 35(x - 80)$	
26	
26.	
3 A shaded parallelogram is graphed on the coordinate grid below.	Slope? Since every answer has the same slope, this must be a y intercept problem.
y 9 9 7 9 6 9 5 9	Use a straight edge on BOTH diagonal lines and see where they touch the y-axis.
	Be careful as you must be precise .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Better yet, with a slope – rise over run of – 2 over 1, continue the diagonal lines until they interest the y-axis
Which of the following functions describes a line that would include an edge of the shaded parallelogram?	
$\mathbf{F} y = -2x + 5$	
$\mathbf{G} y = -2x - 2$	
$\mathbf{H} y = -2x + 9$	
$\mathbf{J} y = -2x - 1$	

27. What is the equation of the line containing the points (7, 5) and (11, 9)? A $y = 4x$ B $y = x - 2$ C $y = 2x - 2$ D $y = x + 2$	Your equation will have a slope that may be calculated by the given points. Use the slope formula: $m = \frac{y_2 - y_1}{x_2 - x_1} =$ It does not matter which point is 1 and which is 2, just be consistent! Using your formula m= Backdoor method: use the y= program and see which equation passes through both points.
28. Which equation describes the line passing through the points (3, 0) and (0, 4)? F $y = 3x + 4$ G $x = 4y + 3$ H $3x + 4y = 12$ J $4x + 3y = 12$	Hummmmmmmm You could calculate the slope for the two points, but only one equation has the slope. You could just solve each for y and use the y= program, but that is a lot of work. Really, you need to plug in (3, 0) and (0, 4) and see which equation works?