\qquad DUE

LET’S TALK ABOUT TRIANGLES

TAKS writers love triangles. You can hardly turn a page without running into a triangle. They like them acute, obtuse, isosceles, and equilateral, and they particularly like them "right".
Remember, no matter what kind of triangle they are, the angles of the triangle always add up to 180 degrees and the longest side is always opposite to the largest angle, the shortest side is opposite to the smallest angle and vice versa.

- ACUTE Triangles - all of the angles are less than 90 degrees.
- SCALENE Triangles - all angles are different
- OBTUSE Triangles - one of the angles is larger than 90 degrees.
- ISOSCELES Triangles - two sides and two angles are equal
- EQUILATERAL Triangles - all sides and all angles are equal
- RIGHT Triangles - One angle is 90 degrees.

Special Right Triangles	$30^{\circ} 60^{\circ} 90^{\circ}$	$45^{\circ} 45^{\circ} 90^{\circ}$
	$x, \quad x \sqrt{3}, \quad 2 x$	$x, \quad x, \quad x \sqrt{2}$

Area	rectangle	$A=l w$	$A=b h$
	triangles	$A=\frac{1}{2} b h$	$A=\frac{b h}{2}$

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

1.

A triangular prism is shown below.

What is the volume of this triangular prism?
A $\quad 192$ in. ${ }^{3}$
B $\quad 240$ in. ${ }^{3}$
C 384 in. 3
D 480 in. ${ }^{3}$

- Area of a triangle = \qquad
- Volume is Area *Height
- A little square in a corner means it is a right triangle.
- In a right triangle, the base and height are the legs of the triangle
- Base = \qquad Height = \qquad
- Height of prism = \qquad
- We don't need to know the length of the hypotenuse.

2.

Near the downtown area of a city, there is a vacant triangular plot of land with sides that measure 22 feet, 27 feet, and 17 feet. If the city council decides to plant an oak tree in the corner with the smallest angle, where should the tree be planted?

A In the corner opposite the side that is 17 feet

B In the corner opposite the side that is 22 feet

C In the corner opposite the side that is 27 feet

D In the center of the triangular plot

Draw a triangle that has what you think a drawing of this park would look like; making sure the 17 foot side is the shortest side.
Now examine the angles.

Match

Smallest angle ___ a. Longest
side
Middle Angle ___
b. Shortest
side
Biggest Angle \qquad c. middle
side
Makes sense!!!!

3.

What is the area of the largest square in the diagram?

This is a 3,45 right triangle.

It is a special right triangle. If the two legs are 3 and 4 or multiples thereof, the hypotenuse must be 5 or a multiple of 5 .

They want to know the area of the big square.

Be careful, they don't want the length of the side. Is the area 5 or 25? \qquad

F 5 units 2
G 9 units 2
H 16 units 2
J 25 units 2

No matter what, the TAKS writers love Right Triangles because you can use the Pythagorean Theorem on them!! (Pythagorean Theorem = PT)
4.

The drawing below shows 3 square parking
lots that enclose a grassy area shaped like a
right triangle.

If Lot A's perimeter is 300 yards and Lot B's
perimeter is 400 yards, what is the perimeter
of Lot C'?

A 500 yd
B 700 yd
C 1400 yd
D 2000 yd

3,4,5 it always works

300, 400, \qquad
If you get a problem like this and it is not $3,4,5$, divide the perimeters a and b by 4 to get one side, then square them add them and take the square root of the answer
5.

Mr. Schultz has a garden shaped like an equilateral triangle that measures 11 feet on each side. He has placed a watering hose that extends from the faucet located at a vertex to the opposite side, as shown below.

Which is closest to the length of the hose in the garden?
A 7.8 ft
B 9.5 ft
C 6.4 ft
D 5.5 ft
6.

The drawing shows how three squares can be joined to form a triangle.

Which set of squares could form a right triangle?
A

C

B

D

Solve each one. See which one makes the PT true. Remember! The hypotenuse is always the longest of the three sides. Also, are any of them multiples of $3,4,5$?
7.

Use the Pythagorean theorem to find the figure that is a right triangle.

H

G

8. Kim walked diagonally across a rectangular field that measured 100 feet by 240 feet.	$\begin{aligned} & \text { A } 2(100+240) \\ & \text { B } \sqrt{100}+\sqrt{240} \\ & \text { C } \frac{100 \times 240}{2} \\ & \text { D } \sqrt{\left(100^{2}\right)+\left(240^{2}\right)} \end{aligned}$ If you don't see the answer, plug in the numbers. You are cooking for " c " Find c using the PT. Then see which answer gives you " c " when you plug in a and b .
Which expression could be used to determine how far Kim walked?	
9. Look at the right triangle shown below. Which of the following could be the triangle's dimensions? F 12, 16.8, 18.2 $G \quad 5.4,10.6,16$ H $1.2,1.6,2$ J $8, \mathbf{1 0}, \mathbf{1 2 . 5}$	
10. What is the perimeter to the nearest centimeter of the regular octagon drawn below? F $\quad 41 \mathrm{~cm}$ G 36 cm H 27 cm J 18 cm	

11. Jillian walks from the parking-lot entrance of a park to the scenic overlook by following a sidewalk along the edge of the park. She walks back to the parking lot by taking a shortcut through the park. The drawing below shows her journey. To the nearest foot, how much shorter was her trip back to the parking lot than her walk to the scenic overlook? A 417 ft B 213 ft C 562 ft D 261 ft Edge walk \qquad $+$ \qquad $=$ \qquad ft Back is the diagonal of a right triangle \qquad $a^{2}+b^{2}=c^{2}$ $+$ \qquad ${ }^{2}=c^{2}$ \qquad $=c^{2}$ How much shorter is C than the edge? \qquad	12. A square park has a diagonal walkway from 1 corner to another. If the walkway is about 38 yards long, what is the approximate length of each side of the park? F 6 yd G 19 yd H 27 yd J 54 yd
13. Megan is using an equilateral triangle as part of a design on a sweatshirt. Each side of the triangle is 12 inches long. Megan is sewing a line of sequins from the midpoint of one side of this triangle to the opposite vertex. Approximately how long will the line of sequins be? A 13.4 in . B $\quad 10.4 \mathrm{in}$. C 8.5 in . D 5.2 in .	Let's draw it and see what happens: Equilateral = all sides the same $\begin{aligned} & a^{2}+b^{2}=c^{2} \\ & 6^{2}+12^{2}=c^{2} \\ & \mathrm{C}^{2}= \\ & \mathrm{C}= \end{aligned}$

14. Mrs. Cheung hired a landscaping service to plant a row of bushes around her triangular backyard.	If the bushes must be planted 3 feet apart, approximately how many bushes are needed for Mrs. Cheung's backyard? A 23 B 25 C 28 D 32 Hint: Find the perimeter using the PT and divide by 3. Show work
15. What is the approximate length of the side of the garden that faces Flm Street?	In a town, there is a small garden shaped like a triangle, as shown below. The side of the garden that faces Sixth Street is 80 feet in length. The side of the garden that faces Third Avenue is 30 feet in length.
16. Look at the drawing shown below. If $\triangle K M P$ is a right triangle formed by the placement of 3 squares, what is the area of the shaded square? A 185 in. 2 B $24 \mathrm{in}^{2}{ }^{2}$ C 66 in. ${ }^{2}$ D $81 \mathrm{in}^{2}{ }^{2}$	This was on the last benchmark...How did you do? Show work

| 19. |
| :--- | :--- | :--- |
| In the figure below, circle M and circle R intersect at point P. |

