NAME \qquad CLASS PD \qquad

The whole reason to factor a polynomial is that it is an algebraic method to find the solutions to a quadratic equation.
What are Prime numbers? \qquad
List the prime number starting with 1 \qquad

The " L " method of factoring.
Number 300300

1	$*$	300300
2	$*$	150150
2	$*$	75075
3	$*$	25025
5	$*$	5005
5	$*$	1001
7	$*$	143
11	$*$	$13(\mathrm{P})$

Number 56

-1	$*$	56
1	$*$	56
2	$*$	28
2	$*$	14
2	$*$	7

The numbers in the " L " are the prime factors .

Factoring Variables: break apart each variable and when a coefficient is present, break it apart using the "L" method.

$\underline{x^{3}}$	$x^{3} y^{2} z^{3}$	$12 x^{2} y^{3}$		So what do you have in common? Circle the common stuff.
X	$x y z$	$1 * 12$	$x y z$	
x	x y z	246	$x \quad z$	
x	x z	2 *3	z	

You do it:
468
-9282
945
-12530
320
$5022 x^{6} y z^{2}$

When you factor a polynomial, you use the L method to factor each term, then gather up all the common factors for lunch and leave the leftovers. (we will presume the 1 factor)
$\left(12 x^{2} y z^{3}\right)+\left(24 x^{3} y z^{4}\right)-\left(8 x y z^{3}\right)$

Gather up the common factors for lunch (circle them)
lunch: $\quad 2 \cdot 2 \cdot x \cdot y \cdot z z z$ or $4 x y z^{3}$
leftovers: $3 x+2 \cdot 3 \cdot x x \cdot z-2$ or $3 x+6 x^{2} z-2$
we now write as: $4 x y z^{3}\left(3 x+6 x^{2} z-2\right)$

Factoring is really Un-distributing - the inverse of distribution.

Greatest Common Factor: The "lunches"are the greatest common factors of the terms. In other words: Greatest common factor is the biggest number or variable power that "goes into" each term evenly.

Find the GCF of each pair of monomials.
15. $15 x^{4}$ and $35 x^{2}$
17. $-6 t^{3}$ and $9 t$
19. $12 a b$ and 12 \qquad
21. $-m^{8} n^{4}$ and $3 m^{6} n$ \qquad
16. $12 p^{2}$ and $30 q^{5}$
18. $27 y^{3} z$ and $45 x^{2} y$ \qquad
20. $-8 d^{3}$ and $14 d^{4}$ \qquad
22. $10 g h^{2}$ and $5 h$ \qquad

Before you start to factor 3 items to check for:

1. ALWAYS CHECK TO SEE IF YOU CAN FACTOR OUT A COMMON VALUE, IT WILL MAKE THE PROBLEM EASIER
2. ALWAYS MULTIPLY THROUGH BY THE DENOMINATOR IF A FRACTION IS PRESENT
3. ALWAYS MULTIPLY THROUGH BY A NEGATIVE 1 IF THE LEADING COEFFICIENT IS NEGATIVE

Factor each polynomial. Check your answer.

1. $8 x^{4}-12 x^{2}$
2. $-12 a b^{3}+20 b$
3. $16 m^{2}-2 n^{3}+30 m$
4. $27 j^{4}-72 j^{3}+9 j$
5. $-5 x^{5}+35 x^{4}-30 x^{3}$
6. $16 x^{6} y+16 x^{2} y^{4}+32 x^{3} y^{2}$
7. The expression used for finding the surface area of a cylinder is $2 \pi r^{2}+2 \pi r h$. Factor this expression.
8. The area of a hallway rug is $\frac{3}{2} x^{2}+\frac{1}{2} x \mathrm{ft}^{2}$. Factor this polynomial to find expressions for the dimensions of the rug.

Factor each expression.
9. $10(k-2)+7 k(k-2)$
10. $9 m^{2}(m+7)+5(m+7)$

There are several ways to factor quadratics and ultimately a quadratic equation. In this class we will only concentrate on 2 methods:

1. "Splitting down the Middle"
2. the Quadratic Formula

Splitting the Middle is limited to factors that have neat integers for coefficients and constants. It will not work for quadratic equations that have no real solutions.

- First the parts of a quadratic function:
- $y=a x^{2}+b x+c$
- $a=$ leading coefficient,$b=$ linear coefficient, and $c=$ constant

First a simple example:

REALLY?!?! This is a lot of work to do. When the leading coefficient $=1$, you can if you know what you are doing basically go straight from step 4 to step 7. ONLY DO THIS SHORT CUT IF YOU UNDERSTAND THE SPLIT DOWN THE MIDDLE WORKS FOR ALL QUADRATICS. .

$\begin{gathered} 1 x^{2}+2 x-35=0 \\ a=1, b=2, c=-35 \\ a c=(1)(-35)=-35 \\ (35 \cdot-1),(-5 \cdot 7) \\ (\boldsymbol{x} \quad)(\boldsymbol{x} \quad)=\mathbf{0} \\ (x-5)(x+7)=0 \text { and } x=5 \text { or }-7 \text { as above } \end{gathered}$ Always check your work!!!!	1. Identify coefficients and constant 2. Go to $\mathbf{y}=$ on your calculator, type in $y_{1}=\frac{a c}{x}$ 4. Press $\mathbf{2}^{\text {nd }}$ GRAPH; look at the table generated. Find a factor pair that adds up to b 5. Set up the template as shown 6. Put the numbers in that you found to work.

$$
\begin{gathered}
6 x^{2}-2 x-4=0 \\
2\left(3 x^{2}-1 x-2\right)=0 \\
\left(3 x^{2}-1 x-2\right)=0 \\
a=3, b=-1, c=-2 \\
a c=-6 \\
(-6 \cdot 1),(-\mathbf{3} \cdot \mathbf{2}) \\
3 x^{2}-3 x \mid+2 x-2=0 \\
3 x(x-1)+2(x-1)=0 \\
(x-1)(3 x+2)=0 \\
x-1=0 \therefore x=1 \\
3 x+2=0 \therefore x=-\frac{2}{3}
\end{gathered}
$$

Check by graphing
In summary use the following "ten step formula" for solving quadratic equations:
You try:

$$
2 x^{2}+13 x+15=0
$$

Step 1: ID "abc"
$a=$
$b=$
$c=$
Step 2: $\quad a c=$
Step 3: Calculator $\mathrm{Y}_{1}=\frac{a c}{x}$
Step 4: Pair that adds up to b (,)
Step 5: rewrite linear term and split $\quad 2 x^{2}+13 x+15=0$

Step 6: factor the left side
Step 7: and factor the right side:
Step 8: Factor again:
Step 9: Use the zero product property to solve:
Step 10: Solution is:
$\{$

1. $x^{2}+7 x+10$
2. $x^{2}+9 x+8$
3. $x^{2}+13 x+36$
4. $2 x^{2}+13 x+15$
5. $3 x^{2}+10 x+8$
6. $4 x^{2}+24 x+27$
7. $-12 x^{2}-35 x-18$
8. $-20 x^{2}+29 x-6$
9. $-2 x^{2}+5 x+42$
10.

The area of a rectangle is $20 x^{2}-27 x-8$.
The length is $4 x+1$. What is the width?

Right now we want to focus on factoring. Finding the solutions will come later. To find the "solutions" to a quadratic equation, you just set your factors = to zero and solve. Those are your solutions, roots, zeros, answers. Example if you got the two factors $(2 x-3)(4 x+5)$, to find the solutions:

$$
2 x-3=0 ; x=\frac{3}{2} \text { and } 4 x+5=0 ; \quad x=-\frac{5}{4}
$$

Written as the solution SET or $\left\{\frac{3}{2},-\frac{5}{4}\right\}$

How many real solutions will a quadratic equation have?

Looking at the graphs we see that there are 3 possible answers to our question. There is a way to determine the number of solutions to a quadratic. Determining the number of real solutions before attempting to solve a quadratic may save you time. This will be especially helpful if we have no solutions. We will know there are no real solutions that before we start to solve and use an appropriate method for solving.

If we calculate the discriminant we will know the number of solutions.

- Discriminant is positive -2 solutions
- Discriminant is zero-1 solution
- Discriminant is negative - No solutions

Cool, but what is the discriminant?

$$
\begin{gathered}
\text { Given } y=a x^{2}+b x+c \\
\text { Discriminant }=\left(\boldsymbol{b}^{2}-\mathbf{4} \boldsymbol{a} \boldsymbol{c}\right)
\end{gathered}
$$

We can find the discriminant for our first example. We have 2 solutions, so the discriminant should be positive:

$$
\begin{array}{rl}
1 x^{2}+2 x-24=0 & a=1, b=2, c=-35 \\
\left(b^{2}-4 a c\right)=2^{2}-4(1)(-24) \\
=4+96 & =\mathbf{1 0 0}
\end{array}
$$

The discriminant is positive so yes, there are to be 2 solutions.

Try:

$$
\begin{aligned}
& 3 x^{2}-1 x-2=0 \\
& \quad a=3, b=-1, c=-2
\end{aligned}
$$

Watch out for negative signs!

$$
2 x^{2}+3 x+5=0
$$

$$
\text { for } 4 x^{2}+12 x+9=0
$$

With a negative discriminant, we have no real solutions. No real solution means that the quadratic will not be factorable. Therefore before attempting to factor always check the discriminant.

QUADRATIC FORMULA

The Quadratic Formula is the Queen Bee of all methods for finding solutions to a quadratic equation.
Any quadratic may be solved using the quadratic formula.

$$
\begin{aligned}
& \text { For: } y=a x^{2}+b x+c \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

What is the expression located under the radical? Yes, the discriminant. The reason why a negative discriminant will have no real solution is because a negative value under a radical takes us down the dark road of imaginary numbers. Imaginary numbers and negative discriminants are saved for Algebra 2

To solve a quadratic equation with the quadratic formula, you will follow the same process of identifying your a, b, and c values. Plug them into the equation and solve for x.

Solve: $3 x^{2}+14 x-5=0$

$$
a=3, b=14, c=-5
$$

Discriminant:

$$
14^{2}-4(3)(-5)=196-(-60)=196+60=256
$$

How many answers? \qquad So yes, there is a real solution.

Take the square root of $256=16$

Now fill in the remaining part of the formula and solve: $\quad x=\frac{-14 \pm 16}{2(3)}$

This gives us 2 equations to solve. Break them apart and solve separately.

$$
\begin{gathered}
x=\frac{-14+16}{6} \quad \text { and } x=\frac{-14-16}{6} \\
x=\frac{2}{6}=\frac{1}{3} \quad \text { and } x=-\frac{30}{6}=-5
\end{gathered}
$$

Check: Solve by factoring: $3 x^{2}+14 x-5=0 \quad a=3, b=14 \quad c=-5$

$$
\begin{aligned}
& a c=-15 \\
& Y_{1}=-\frac{15}{x}
\end{aligned}
$$

$$
(-1,15) \text { add up to }+14
$$

$$
3 x^{2}-1 x+15 x-5=0
$$

rewrite linear term and split

$$
\left(3 x^{2}-1 x\right)+(15 x-5)=0
$$

factor left and right:
zero product property:

$$
\begin{gathered}
x(3 x-1)+5(3 x-1)=0 \\
(3 x-1)(x+5)=0 \\
3 x-1=0 \quad \therefore \quad x=\frac{1}{3} \\
x+5=0 \quad \therefore \quad x=-5
\end{gathered}
$$

HOMEWORK:
Find the number of real solutions of each equation using the discriminant.

1. $+25=0$	2. $x^{2}-11 x+28=0$	3. $x^{2}+8 x+16=0$

Now finish solving (if possible) using the quadratic formula and write the solutions in set form and in factor form.

Solve using the quadratic formula. Show both factors and solutions using set notation.

Method 1. Old Fashioned Multiplication:

Multiply the binomials:	Do this like an old fashioned multiplication problem:
$(2 x+3)(5 x-9)$	- Multiply -9 times $3=27$
$2 x+3$	- Multiply -9 times $2 x=18 x$
$\times \quad 5 x-9$	- Multiply $5 x$ times $3=15 x$
$-18 x-27$	- Multiply $5 x$ times $2 x=10 x^{2}$.
$10 x^{2}+15 x$	- Combine like terms by adding -
$10 x^{2}-3 x-27$	$18 x$ and $+15 x=-3 x$

Method 2. FOIL:

$(2 x+3)(5 x-9)=$	F	0	1	L
	First	Outside	Inside	Last
$2 x \times 5 x=10 x^{2}$		Multiply the	t terms	
$2 x \times(-9)=-18 x$		Multiply the	tside te	
$3 \times 5 x=15 x$		Multiply the	ide term	
$3 \times(-9)=-27$		Multiply the	t terms	
$=10 x^{2}-3 x-27$		Combine like	rms	

- TAKS TIP: Put the problem in the calculator at Y1
- Put an answer at Y2
- Press $2^{\text {nd }}$ graph of table. If ALL the y values match...it is correct.

Method 3. Distribution of the first polynomial. This works for quadratics, cubics, anything!!!

$$
\begin{aligned}
& (2 x+3)(5 x-9)=2 x(5 x-9)+3(5 x-9)=10 x^{2}-18 x+15 x-27 \\
& \quad=10 x^{2}-3 x-27
\end{aligned}
$$

This is a good method to know as foil only works for binomials and the multiplication method gets sloppy for trinomials and above, but this always works.
Example $(2 x+5)\left(10 x^{2}-3 x-27\right)=2 x\left(10 x^{2}-3 x-27\right)+5\left(10 x^{2}-3 x-27\right)$ Multiply and simplify......

HOMEWORK - DUE EXAM DAY:

Multiply:

1.

$$
(x+3)(x+4)
$$

4.

$$
(2 x+5)(x+6)
$$

2
$(x-6)(x-6)$
5.
$\left(m^{2}+3\right)(5 m+n)$
3.

$$
(x-2)(x-5)
$$

9.

$(5 x-3)(2 x+7)$
6.

$$
\left(a^{2}+b^{2}\right)(a+b)
$$

10.

$$
(x+4)\left(x^{2}+3 x+5\right)
$$

8.

$(x+5)(-3 x+4)$
7.
$(x+5)(2 x-3)$
11.
$(3 m+4)\left(m^{2}-3 m+5\right)$
12.
$(2 x-5)\left(4 x^{2}-3 x+1\right)$

