\qquad
1.

22 The graph of the function $y=x^{2}$ is given below.

How will the graph be affected if the coefficient of x^{2} is decreased to $\frac{1}{4}$?

F The parabola will be wider.
G The parabola will be narrower.
H The parabola will be translated up.
J The parabola will be translated down.

Problem 15 looks a lot like the parent function and graph for parabolas. But shift gears. Problems 1-12 talked about translating the parabolas and were all controlled by "C". Now " A " is changing that that does what to the graph (in words)?
2.

Look at the equations shown below.

$$
y=\frac{4}{5} x^{2}+3, \quad y=\frac{4}{5} x^{2}, \quad y=\frac{4}{5} x^{2}-5, \quad y=\frac{4}{5} x^{2}+\frac{3}{5}
$$

Do any of these graphs open
"downwards"? If so the " A " value would have to be
\qquad .Eliminate answer(s) Do these graphs have different " A " values? \qquad Can they be narrower or wider? \qquad So eliminate answer(s) \qquad
Only one answer is left. . Graph it and see if it works
3.

The graphs below represent functions of the form $y=a x^{2}$. In which of the following graphs does a have the smallest value?

F

H

G

J

List the graphs from narrowest to widest: \qquad

Now, let's make some equations and graph them. Use the numbers 1,2,3, and 4 for " a ', and write 4 equations using these numbers as "a"
$Y=$
$Y=$
$Y=$
$Y=$

Put them in the calculator. Which number made the graph the narrowest??? \qquad
Which was the widest? \qquad
The TAKS questions is asking for ??? so our answer is ? \qquad
4.

How does the graph of $y=-\frac{3}{4} x^{2}$ differ from the graph of $y=\frac{4}{3} x^{2}$?

F The graph of $y=-\frac{3}{4} x^{2}$ opens downward and is wider than the graph of $y=\frac{4}{3} x^{2}$.
G The graph of $y=-\frac{3}{4} x^{2}$ opens upward and is wider than the graph of $y=\frac{4}{3} x^{2}$.
H The graph of $y=-\frac{3}{4} x^{2}$ opens upward and is narrower than the graph of $y=\frac{4}{3} x^{2}$.
J The graph of $y=-\frac{3}{4} x^{2}$ opens downward and is narrower than the graph of $y=\frac{4}{3} x^{2}$.
Looks like a calculator issue to me.
Graph them and compare.
Is F true? \qquad
Is G true? \qquad
Is H true? \qquad
Is J true? \qquad
5.

The grid below shows parabolas A and B of the form $y=a x^{2}+c$.

6.

Which of the following functions of the form $y=a x^{2}$ produces the widest graph and opens upward?

F $\quad y=-\frac{1}{4} x^{2}$
G $y=\frac{6}{5} x^{2}$
H $y=-\frac{4}{3} x^{2}$
J $y=\frac{7}{3} x^{2}$

Which don't open upward?
___ and \qquad

Graph the other two... which is widest:
7.

24 Which best describes the effect on the graph of $f(x)=4 x+8$ if the y-intercept is changed to -3 ?

F The slope decreases.
G The new line passes through the origin.
H The x-intercept increases.
J The y-intercept increases.
8.

26 The graph of a linear function is shown below.

If the line is translated 2 units down, which equation will best describe the new line?

F $\quad y=3 x+1$
you gotta graph
G $y=\frac{1}{3} x+1$
H $y=3 x+5$
J $y=\frac{1}{3} x+5$

9.

Order the following from least steep to steepest.
A. $y=4 x-4$
B. $y=-1 / 2 x+1$
C. $y=3 / 4 x-3$
D. $y=2 x+2$
E. $y=-2.25 x-2$
F. $y=-3 x+3$
G. $y=x-1$
A. $\{A, B, C, D, E, F, G\}$
B. $\{B, C, G, D, E, F, A\}$
C. $\{A, C, E, G, B, D, F\}$
D. $\{A, F, E, D, G, C, B\}$
10.

5 Jake studied the parabola shown below.

Which is an accurate conclusion that Jake could make about this parabola?

A The vertex is at $(-2,0)$.
B The minimum value is at $(0,-4)$.
C The maximum value is at $(2,0)$.
D The axis of symmetry is the x-axis.
11.

Which of the following is the vertex of the graph of the equation $y=-x^{2}+2 x+3$?

A $(0,3)$
B $(-1,0)$
C $(1,4)$
D $(3,0)$
Parabola. This is what anything with an x^{2} in it looks like graphed.

The bottom (or top) is the vertex. (Also called the minimum or maximum point).

What is the y intercept?
So, you can eliminate that as the answer because "b" has a value.

Is this parabola going to open up or down? so the vertex is the highest or
lowest point? \qquad
Put it in at $\mathrm{y}=$ and look at the graph.

Change the fractions to decimals.

Get the 36 over to the left side and graph. You do not have to distribute first if you use your parenthesis. Now that you have it in decimals, can you see it on the graph? You can always use the trace program to find it as close as possible.

