\qquad
1.

The table below shows the relationship between x and y.

x	y
-1	-1
0	1
1	3
2	17

Which function best represents the relationship between the quantities in the table?

F $\quad y=2 x+1$
G $\quad y=2 x^{3}+1$
H $\quad y=2 x^{2}-3$
J $\quad y=2 x^{2}+4 x+1$
2.

Which of the following equations best represents the relationship in the set of data shown below?

x	-4	-3	-1	2	4
y	24	17	9	12	24

A $y=-7 x-4$

B $\quad y=\frac{3}{2} x^{2}$

C $y=-5 x+4$

D $y=x^{2}+8$
3.

How would the graph of the function
$y=x^{2}+4$ be affectedi ifthe function were
changed to $y=x^{2}+1$?
F The graph would shit 3 units up.
G The graph would shit 3 units down.
H The graph would shitit 3 units to the right.
J The graph would siit 3 units to the let.
4.

What is the effect on the graph of the equation $y=-4 x^{2}$ when the equation is changed to $y=4 x^{2}$?

A The graph of $y=4 x^{2}$ is translated 8 units down.

B The graph of $y=4 x^{2}$ is a reflection of $y=-4 x^{2}$ across the x-axis.
C The graph of $y=4 x^{2}$ is translated 8 units up.

D The graph of $y=4 x^{2}$ is a reflection of $y=-4 x^{2}$ across the y-axis.
5.

How does the graph of $y=x^{2}$ differ from the graph of $y=x^{2}-4$?

A The graph of $y=x^{2}-4$ is wider than the graph of $y=x^{2}$.

B The graph of $y=x^{2}-4$ is shifted to the left of the graph of $y=x^{2}$.

C The graph of $y=x^{2}-4$ is shifted down from the graph of $y=x^{2}$.

D The graph of $y=x^{2}-4$ is narrower than the graph of $y=x^{2}$.

Okay, you get this problem on the TAKS. How can you prove the answer you pick is correct? Explain in real words.
\qquad
\qquad
6.

In the graph of the function $y=x^{2}+5$, which describes the shift in the vertex of the parabola if, in the function, 5 is changed to -2 ?

A 3 units up
B 7 units up
C 3 units down
D 7 units down
7.

When graphed, which function would appear to be shifted 2 units up from the graph of $f(x)=x^{2}+1$?

F $\quad g(x)=x^{2}-1$
G $\quad g(x)=x^{2}+3$
H $g(x)=x^{2}-2$
J $g(x)=x^{2}+2$
8.

The graphs of $f(x)$ and $g(x)$ are shown on the grid below.

If $f(x)=x^{2}-1$, what is the equation of $g(x)$?
A $g(x)=x^{2}+8$
B $g(x)=x^{2}-8$
C $g(x)=8 x^{2}-1$
D $g(x)=-8 x^{2}-1$
9.

Which graph shows a function $y=x^{2}+c$ when $c<-1$?

10.

7 The graph of a function of the form $y=a x^{2}+c$ is shown below.

If the graph is translated only up or down to include the ordered pair (6,7), which of the following equations best represents the resulting graph?

A $y=-\frac{1}{3} x^{2}+3$

B $y=\frac{1}{3} x^{2}+1$

C $y=-\frac{1}{3} x^{2}-10$
D $y=\frac{1}{3} x^{2}-5$
11.

How does the graph of $f(x)=x^{2}-7$ compare to the graph of $g(x)=x^{2}+5$?

A The vertex of $f(x)$ is 12 units lower.
B The vertex of $f(x)$ is 12 units higher.
C The vertex of $f(x)$ is 2 units to the left.
D The vertex of $f(x)$ is 2 units to the right.

First of all, what two answers cannot be correct as the question merely translates the graph and does not "reflect" it?
\qquad and \qquad
What is the value of " c " on the given graph? (C is the vertex.)
Mark the point $(6,7)$ on the graph Is the new graph going to be moved up or down from the given graph? \qquad _.
That should eliminate two answers. If you said "up", then C and D are eliminated but if you said down, A and b are eliminated.
Explain why:

Now, count the number of units that (6.7) is away from the given graph VERTICALLY.
So, the graph new graph is moved ___ units ___ (up or down)
Add or subtract this from the " c " value on the graph. \qquad . Answer? \qquad

What does changing the " c " value do to a quadratic?

Translates it up/ down/ left/ right

