Math Modeling: Probability A Game of Multiplication:

Name \qquad Class Period \qquad

Probability: describes the chance that an uncertain event will occur.
Theory vs. Experiment

- What does theoretical mean? \qquad
Once you get the theoretical probability you can use proportions to predict probability for any number of tries.

$$
P(E)=\frac{\# \text { of possible outcomes of } E}{\text { total \# of outcomes in the sample space }}
$$

- What does experimental mean?

$$
P(E)=\frac{\# \text { of times event } E \text { occurs }}{\text { total } \# \text { of trials }}=\frac{\# \text { successes }}{\# \text { tries }}
$$

Now for experimental data TAKS style!
1.

A spinner was spun 20 times. The results are shown in the table below.

Spinner Results	
Red 7 White 5 Blue 4 Yellow 4	

Which color on the spinner has the same experimental probability as theoretical probability?
F Red
G White
H Blue
J Yellow

What is the theoretical probability of spinning and landing on blue? ___ (write as both a fraction and a decimal).

Will this be the same for the other colors? \qquad

If they spin 4 times, theoretically, how many should be blue?
$.25 \times=$

Theoretically, how many should be blue out of 20 spins?
$.25 x=$ \qquad

Since this is the same for the other colors, what color has this value?
2.

The table below shows the results of rolling a fair number cube 50 times during a classroom activity.
Number-Cube Data

Outcome	Frequency
1	7
2	12
3	10
4	9
5	8
6	4

What is the difference between the theoretical probability of rolling a number less than 4 and the experimental results recorded in the table above?

F 8%
G 79%
H 58%
J 29\%
3.

Reggie is a professional baseball player. He has the following batting record.

Type of Hit	Number
Singles	210
Doubles	20
Triples	1
Home runs	6
No hits	574

Based on this record, what is the probability that Reggie will get a hit during his next time at bat?

A 0.413
B 0.186
C 0.292
D 0.366

Rolling a number less than 4 , includes what numbers? \qquad

What is the theoretical probability of rolling a number less than 4? \qquad
That is what percent? \qquad
OR!!
If you roll a die, 1 should come up $\frac{1}{6}$ times. Same for 2 and 3 , so how many total that is you can add them up and get the same value = \qquad

* (the sum of probabilities will equal 1)

Experimental probability:
How many times did the "fair cube" come up 1, 2 and 3 ? \qquad
Total rolls of the number cube? \qquad
Experimental probability is \qquad
What is this as a percent? \qquad

In case we have forgotten the actual TAKS problem, what are we asked to do???? What is the DIFFERENCE between the theoretical and experimental?

How many times total at bat? \qquad
How many total "hits"? \qquad
Make a fraction and divide

6. WITH OR WITH OUT REPLACING???	
A jar contains 6 red marbles and 10 blue marbles, all of equal size. If Dominic were to randomly select 1 marble without replacement and then select another marble from the jar, what would be the probability of selecting 2 red marbles from the jar?	Once again, the key to success is attention to what facts are being given. When the marbles are being taken out of the jar, are they being replaced? $\mathbf{y / n}$ Total marbles? \qquad Red?....... 6 out of \qquad . Probability $1^{\text {st }}$ marble is red? \qquad Don't put it back.
$\text { A } \frac{9}{64}$	Now, how many marbles?
B $\frac{1}{8}$	Now, how many reds?...... 5 out of \qquad Probability? \qquad
$\text { C } \frac{3}{5}$	Now, just multiply.
D $\frac{3}{8}$	What if they put the first red marble back, what would be the probability of pulling 2 red marbles out?
7.	
Heidi has a main-course choice of a hamburger, a hot dog, an egg roll, a taco, a fish sandwich, or a chicken sandwich. She has a side-order choice of french fries, corn chips, potato chips, or a salad. Heidi's beverage choice can be a soda, fruit punch, milk, or water. Which is the best method to determine how many different combinations Heidi could choose?	The Fundamental Counting Principle: If there are \mathbf{a} ways for one activity to occur, and \mathbf{b} ways for a second activity to occur, then there are $\mathbf{a} \bullet \boldsymbol{b}$ ways for both to occur (works when there are more than 2 activities)
F Add the total number of items in the 3 categories together	wi
G Multiply the total number of main-course choices by the total number of side-order choices and add the product to the total number of beverage choices	
H Multiply the sum of the total number of main-course choices and the total number of side-order choices by the total number of beverage choices	
J Multiply the total number of items in each of the 3 categories together	

