\qquad
\qquad

Let's compare quadratic and linear equations:

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& c=y \text { intercept }
\end{aligned}
$$

c is the constant or numerical term
Changing \mathbf{c} translates the graph up and down.
a makes the graph get wider or narrower. The larger the $|a|$ the narrower the graph; the smaller the $|a|$ the wider the graph.
$-\boldsymbol{a}$ reflects the graph over the x-axis.
b moves the graph left and right

b the constant or the numerical term Changing \mathbf{b} translates the graph up and down
\mathbf{m} this is the slope and changing it will make the graph get steeper or flatter. The larger the $|m|$ the steeper the graph. The smaller the $|m|$ the flatter the graph.
$-\boldsymbol{m}$ reflects the graph over the $y-$ axis.
Changing the value of \mathbf{m} rotates the graph around the y-intercept.

Summary for TAKS Quadratics

$>\mathbf{c}$ is the y intercept and translates the parabola up and down
> a makes the parabola get wider or narrower
$>$ Making the "a" negative reflects the parabola over the y - axis.
$>$ Vertex - minimum or maximum point of a parabola
> Parabolas either open "up" or "down"
> If the parabola opens "up", a is positive

> If the parabola opens "down", " a " is negative

> MINIMUM: When a parabola opens up, the vertex is the lowest point on the graph and it is called a.
> MAXIMUM: When a parabola opens down, the vertex is the highest point on the graph and it is called a
$>$ HINT: To date, TAKS has never tested on the effect of " b " so answers about moving left or right are wrong !!!!!!!
$>$ The axis of symmetry is the vertical line that passes through the vertex and the parabola and is the center of the parabola - it cuts the parabola in half.
$>$ If there is no " b " in your equation, the axis of symmetry is the y axis (nice!!!) If there is a " b ", the axis of symmetry is $\boldsymbol{x}=\frac{-\boldsymbol{b}}{2 \boldsymbol{a}}$
$>$ As a vertical line the axis of symmetry is the equation: $x=\frac{-b}{2 a}$
$>$ The vertex is an (x, y) ordered pair. The value for y may be calculated by inserting $x=\frac{-b}{2 a}$ into the equation for \mathbf{x} and solve for \mathbf{y}.
$>$ Solving a quadratic equation means to find the values of \boldsymbol{x} where the parabola crosses/touches the x-axis. The solutions may be identified as

```
roots = zeros = solutions =x - intercepts
```

HOW TO GRAPH A QUADRATIC.
Example: $y=3 x^{2}+6 x-4$

$$
a=3, \quad b=6, \quad c=-4
$$

$\mathrm{c}=$ the y intercept.
Graph it.
Find the "axis of symmetry"

$$
x=\frac{-b}{2 a}=-\frac{6}{2(3)}=-1
$$

Go to $x=-1$ and make a vertical dotted
line

Vertex: Use your x from the axis of symmetry; plug it into the equation to find the y value of the vertex.

$$
y=3(-1)^{2}+6(-1)-4=
$$

$3-6-4=-7$ so the vertex is $(-1,-7)$

Graph it.

Reflection of y-intercept: There has to be a point on the other side of the axis of symmetry that is the reflection of the y intercept. The distances will be equal. That point is $(-2,-6)$. Graph it.

Estimate what the solutions to this equation are. Where does the parabola cross the x axis?

Now to get a $3^{\text {rd }}$ point and its reflection to assist in graphing the parabola l look to the next value of x . We have the y-intercept where $x=0$ now let's calculate the value of y for $x=1$:

$$
\begin{aligned}
y & =3(1)^{2}+6(1)-4 \\
& =3+6-4 \\
y & =5 \text { or }(1,5)
\end{aligned}
$$

Using symmetry the reflected point will be 2 units from the axis of symmetry or at $(-3,5)$

$$
y=2 x^{2}+4 x-6
$$

Axis of symmetry \qquad

Vertex \qquad - Plot on the graph

Y intercept? \qquad
Reflection of y intercept \qquad - Plot on the graph

Choose a value for x , and calculate the corresponding value of y . Plot your point and its reflection.

Sketch in graph
Best estimate of roots?

$$
y=x^{2}-5 x+4
$$

Axis of symmetry \qquad

Vertex \qquad - Plot on the graph

Y intercept? \qquad
Reflection of y intercept \qquad - Plot on the graph

Choose a value for x , and calculate the corresponding value of y . Plot your point and its reflection.

Sketch in graph
Best estimate of roots? \qquad

$$
y=-2 x^{2}+4 x+6
$$

Axis of symmetry \qquad

Vertex \qquad - Plot on the graph

Y intercept? \qquad
Reflection of y intercept \qquad - Plot on the graph Choose a value for x , and calculate the corresponding value of y . Plot your point and its reflection.

Sketch in graph

Best estimate of roots? \qquad

