NAME AND CLASS PD

Graphing an inequality in $y>m x+b$ form is not that different than graphing an equation of the $y=m x+b$ form.

1. Locate the line of the graph as if it were $y=m x+b$, then you get fancy with it.
2. Remember open circles were used when there was no = sign in your inequality. Now you use a dashed line for <or>. A solid line means the inequality has an equal sign too: \leq or \geq.
3. Then you have to "shade" up for greater than, down for less than. Examples:

Graph:

$$
y<3 x+2
$$

I make a box to make sure I do everything right:

slope $=3 / 1$	\mathbf{y}-intercept=2
no equal sign: dotted line	<: shade down

$y \geq-\frac{1}{2} x-2$

slope $=-1 / 2$	y-intercept $=-2$
equal sign: solid lie	$>$: shade up

Check again $(0,0)$ should be a solution to the inequality.

$$
\begin{gathered}
y \geq-\frac{1}{2} x-2 \\
0 \geq-\frac{1}{2}(0)-2 \\
0 \geq-2 \text { true }
\end{gathered}
$$

To shade up or down? Put your finger on the graphed line.

- If $y,<$ then you move in a direction that y is less than the line - down.
- If $\boldsymbol{y}>$ then move in a direction that y is greater than the line - up.

Solutions? Any point in the shaded area!!! If it is a solid line, also any point on the line (dotted line, those points don't count!!!!

Check: $(0,0)$ is shaded and therefore should be a solution if put into the inequality.

$$
\begin{gathered}
y<3 x+2 \\
0<3(0)+2 \\
0<2 \text { true }
\end{gathered}
$$

GRAPHING SYSTEMS OF INEQUALITIES of the $\boldsymbol{y}>\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ form DUE EXAM DAY

NAME AND CLASS PD

Graphing a system of inequalities in $m x+b$ form is not that different than graphing an inequality.

1. Locate both lines of the graph as if they were $y=m x+b$, then you get fancy with it.
2. Remember open circles were used when there was no $=$ sign in your equality? Well, now you use a dotted (dashed) line with open spaces between the dashes. AS solid line means it has an = sign also.
3. Then you have to "shade" up for greater than, down for less than. Examples:

	slope $=3 / 1$ y-intercept $=2$ no $=:$ dotted line $<$ shade down and slope $1 / 2$ y-intercept=-3 no $=:$ dotted line $>$ shade up The solutions are the points where the two shaded areas meet (remember dotted lines not included, solid lines included) Quick trick to test your graph. Use (0,0) Put in both equations. If both are true, then $(0,0)$ is in solution area, if not it should be outside. $0<0+2$ True and $0>0-3$ True $(0,0)$ IS IN solution area.
	slope -1/2 equal - solid line and y-intercept=-2 \quad slope=2 dotted shade up Using (4, 0) check: $0>-\frac{1}{2}(4)-2 \text { and } 0<2(4)-2 \text { True }$ $0<0-2$ False $(0,0)$ is not in the solution set. Therefore it should not be shaded.

HOMEWORK: Graph the following System of Inequalities

1. $\left\{\begin{array}{c}y \leq \frac{3}{4} x+1 \\ y>-3 x-2\end{array}\right.$

2. $\left\{\begin{array}{c}y<4 \\ y \geq 2 x-2\end{array}\right.$

3. $\left\{\begin{array}{l}y \leq 2 x-3 \\ y \geq 2 x+2\end{array}\right.$

