NAME AND CLASS PD

We read from left to right. Practice writing the variable first; compare the variable to a number. Graph $x \leq 3$.
Step 1: Draw a circle on the number.

If $>$ or $<$, leave empty. If \geq or \leq, fill in.
Step 3: Draw an arrow.

If $<$ or \leq, draw arrow to left. If $>$ or \geq, draw arrow to the right.
Write the inequality shown by the graph.

Step 1: Write a variable and the number indicated by the circle. x ? -4
Step 2: Look at the direction of the arrow.
If arrow points left, use $<$ or \leq.
If arrow points right, use $>$ or \geq.

The Holt Algebra 1 textbook teaches like this, but be careful!! This will only work if you write the variable first!!

Step 3: Look at the circle.
If circle is empty, use $>$ or $<$.
If circle is filled in use, \geq or \leq.
$x>-4$

Graph or write the inequality shown by the graph - simplify first if necessary:

1. $m \geq 8-3$	2. $p<3.5$
3.	4.
5. $k>-12$	6. $-6 \frac{1}{2} \leq w$
SIMPLIFY! 7. $b \leq 2^{3}-10$	8. $n<-\sqrt{2(5)+6}$

Describe the solutions of each inequality in words:

1. $2 m \geq 6$
2. $t=3<8$
3. $1<x-5$
4. $-10 \geq \frac{1}{2} c$

Graph the inequality or write the inequality for the given graph:

Define a variable and write an inequality for each situation. Graph the solutions.
13. Josephine sleeps more than 7 hours each night.

14. In 1955, the minimum wage in the U.S. was $\$ 0.75$ per hour.

Define a variable and write an inequality for each situation.
15. To qualify for the job, applicants must have more than 3 year of experience in the field.
16. As of August 1996, the speed limit on rural interstates in North Carolina is 70 mph .
17. In 2005 , the minimum wage in the U.S. was $\$ 5.15$ per hour.

Write the inequality shown by each graph.
(18.

Solving inequalities is just like solving equations with ONE MAJOR DIFFERENCE. In inequalities, negative
coefficients require a sign direction change!

That is when you multiply or divide by a negative you MUST change the direction of the inequality!!

The Rules:

- Use the same processes of isolating the variable as you would an equation.
- Inequalities with an equal sign included: do not drop or add "equal to" signs. This is a primary cause of wrong answers in inequalities; people forget and drop the equal sign.
- When you get to the final step of clearing out the coefficient
- If it is positive, you leave the sign alone.
- When you multiply or divide by a negative, flip the direction of the inequality!!

Examples:

move x to the left side $\begin{aligned} & 2 x+4> 3 x-2 \\ &-3 x \quad-3 x \\ &-1 x+4>-2 \\ &-4 \quad-4 \\ &(-1)-1 x>-6(-1) \\ & x<6 \end{aligned}$ $-3 x \quad-3 x \quad \text { subtract } 3 \mathrm{x}$ subtract 4 multiply by -1 SIGN CHANGE!!!!	same inequality but, move x to the right side $\begin{array}{lc} 2 x+4>3 x-2 & \text { subtract } 2 \mathrm{x} \\ -2 x-2 x & \\ 4>x-2 & \text { Add } 2 \\ +2+2 & \text { No sign change } \\ 6>x & -2 x+2 \end{array}$ SAME ANSWER
ALWAYS CHECK YOUR ANSWER!!!!! $x<6$ PICK A NUMBER LESS THAN 6 (I PICK ZERO)$\begin{aligned} 2(0)+4 & >3(0)-2 \\ 4 & >-2 \text { TRUE } \end{aligned}$	

HOMEWORK: Solve each inequality and graph

1. $b+8>15$	2. $t-5 \geq-2$
3. $-4+\frac{x}{3} \geq 1$	4. $g+8<2$
5. $-9 \geq m-9$	$6.15>2 d+19$
7. $-2 x>6$	$8 .-\frac{a}{5}<1$

9. $\frac{3}{4} b>3$	10. $-15 y<-30$
$11.2 x+30 \geq 7 x$	$12.2 k+6<5 k-3$
13. $3 b-2 \leq 2 b+1$	$14.2(3 n+7)>5 n$
15. $5 s-9<2(s-6)$	
$19.2(8-3 x) \geq 6 x+2$	$16 .-3(3 x+5) \geq-5(2 x-2)$
$17.4 z+2.2>2.6 z-0.2$	

