\qquad
\qquad
1.

Jupiter has an equatorial diameter of about 8.9×10^{4} miles, which is about 11.2 times as great as Earth's equatorial diameter. According to this information, what is Earth's approximate equatorial diameter in scientific notation?

F $\quad 2.3 \times 10^{3} \mathrm{mi}$
G $\quad 9.97 \times 10^{5} \mathrm{mi}$
H $7.95 \times 10^{3} \mathrm{mi}$
J $2.01 \times 10^{2} \mathrm{mi}$

- Should the earth's diameter be bigger or smaller than Jupiter? \qquad
- That eliminates \qquad for sure. Divide 8.9 by 11.2 \qquad
- Now make that a decimal between 0 and 10 and adjust the exponent.

2. What is the simplified form of $\frac{a^{4} b^{2} c}{a^{3} b^{5} c^{2}}$? A $a b^{3} c^{2}$ B $\frac{a}{b^{3} c^{3}}$ C $a^{7} b^{7} c^{3}$ D $\frac{a}{b^{3} c}$	Step one....do any variables need a 1 exponent? \qquad Is this multiplication or division? \qquad So you \qquad the exponents. That gives you a b c Were any of the exponents negative? \qquad Do you have to move the a value? \qquad Do you have to move the b value? \qquad Do you have to move the c value? Answer? \qquad
3. Which expression represents the area of a rectangle with sides measuring $2 x^{2} y^{4} z$ units and $5 x y^{4} z^{3}$ units? F $\quad 7 x^{2} y^{8} z^{3}$ units 2 G $\quad 7 x^{3} y^{8} z^{4}$ units 2 H $10 x^{3} y^{8} z^{4}$ units 2 J $10 x^{2} y^{8} z^{3}$ units 2	What is the formula for the area of a rectangle? \qquad So, length = \qquad And width = \qquad Write $A=L W$ in these terms.

4. The area if a square is $169 x^{6} y^{4} z^{2}$ What is the length of each side of the square? And ? = 169?? The sides of a square are the \qquad Same base, add the exponenents.	
5. Marlena was asked to find an expression that is not equivalent to 2^{12}. Which of the following is not equivalent to the given expression? F $\left(2^{2}\right)^{6}$ G $\left(2^{8}\right)^{4}$ H $\quad\left(2^{6}\right)\left(2^{6}\right)$ J $\quad\left(2^{3}\right)\left(2^{9}\right)$. Hint!!! Powers to Powers!!!!
6. Which expression best represents the simplification of $\left(3 m^{-2} n^{4}\right)\left(-4 m^{6} n^{-7}\right)$? F $-\frac{12 m^{4}}{n^{3}}$ G $-\frac{1}{12 m^{4} n^{3}}$ H $-\frac{m^{4} n^{3}}{12}$ J $-\frac{12 n^{3}}{m^{4}}$	Is this multiplication or division? \qquad So, you \qquad the numbers (coefficients) and \qquad the exponents. What are the coefficients when multiplied? \qquad That is a number...not a negative exponent. So, In a fraction the number goes on the top or bottom of the fraction? \qquad That eliminates \qquad and \qquad Now do the variables and you get $m \quad n$ There is a negative exponent. What do you do with that variable? \qquad Do you move the other variable with the positive exponent? \qquad So, what is the answer? \qquad

