

Which of the following correctly describes two triangles, one a single reflection of the other across the x-axis?

A $\triangle K L M \cong \triangle P N M$
B $\triangle K R M \cong \triangle P Q M$
C $\triangle K R M \cong \triangle P N M$
D $\Delta K L M \cong \Delta K R M$
2.

The quadrilateral with vertices $R(1,1), S(1,4)$, $T(5,8)$, and $V(7,-2)$ is translated 2 units to the right and 3 units down. Which of the following are the coordinates of two of the vertices of the translated quadrilateral?

A $(3,4),(7,5)$
B $(-1,-2),(3,5)$
C $(7,11),(3,4)$
D $(3,-2),(7,5)$

Graph the quadrilateral and the translated quadrilateral.
3.
$\Delta R S T$ is translated so that R is mapped to R^{\prime}.

Which set of ordered pairs best identifies points S^{\prime} and T^{\prime} ?
F $\quad S^{\prime}(8,3), T^{\prime \prime}(3,8)$
G $\quad S^{\prime}(4,3), T^{\prime \prime}(9,8)$
H $S^{\prime}(10,-1), T^{\prime}(12,-9)$
J $\quad S^{\prime}(10,3), T^{\prime}(5,4)$
4.
$47 \Delta R S T$ is shown on the coordinate plane below.

Find the coordinates of the vertices of the image of $\triangle R S T$ reflected across the y-axis.

A $(-2,-3),(-4,-6),(-5,-1)$
B $(2,3),(4,6),(5,1)$
C $(0,3),(-2,6),(-3,1)$
D $(2,-3),(4,-6),(5,-1)$

- \quad moved up how many units? \qquad
- Y moved over how many units? \qquad
- So, move S the same way.
- New coordinates?
- (,)
- That does it!!!

Over the y. Flip it, don't just slide it.
T is at -5 on the x, so it will be at positive \qquad when flipped.
Only 2 answers have that x value, __and \qquad Now, think, it's all going to be in Quadrant
\qquad where both x and y are positive.
So? \qquad
5.

The graph below shows $\triangle X Y Z$ and similar $\triangle X^{\prime} Y^{\prime} Z^{\prime}$.

Which statement is true when transforming $\triangle X Y Z$ to $\Delta X^{\prime} Y^{\prime} Z^{\prime}$?
F All the corresponding angles will increase by a multiple of 3 .
G All the corresponding angles will increase by a scale factor of $\frac{1}{3}$.
H All the corresponding sides are proportional, with a scale factor of 3 .
J All the corresponding sides are proportional, with a scale factor of $\frac{1}{3}$.

Little triangle to big triangle.

So do you want to multiply by a fraction or a number bigger than 1 ?. \qquad
Do angles of similar triangles change? \qquad
6.
$\Delta K L M$ has coordinates $K(-8,3), L(-4,1)$, and $M(-2,7)$. What will be the new coordinates of point M if the triangle is translated 4 units to the right and 3 units down?

$$
\begin{array}{ll}
\mathbf{F} & (0,-2) \\
\mathbf{G} & (2,4) \\
\mathbf{H} & (-4,0) \\
\mathbf{J} & (-6,4)
\end{array}
$$

7.

$\triangle D F G$ has vertices $D(2,4), F(4,8)$, and $G(6,4)$.

$\triangle D F G$ is dilated by a scale factor of $\frac{1}{4}$ and has the origin as the center of dilation. What are the coordinates of F^{\prime} ?

F $(1,2)$

G $\left(\frac{1}{2}, 1\right)$
H $(16,32)$
J $\left(\frac{3}{2}, 1\right)$

This is a slide, not a flip!!!

Take point m ()
now move four to the right, to the ordered pair, add 4 to the X value \qquad $=$ \qquad . That gives you the answer.

Let's finish it:

Now, move down 3, and subtract three from the y-value;
\qquad $=$ \qquad _.

This confirms the answer.

Dilate means make larger or smaller in proportion.
To dilate by a "scale" factor, just multiply.

Take point $\mathrm{F}(4,8)$

Multiply $1 / 4$ times $4=$ \qquad

Multiply $1 / 4$ times $8=$ \qquad

New point? (,)
8.

Identify the drawing that shows Figure 1 under dilation to produce Figure 2, using center of dilation $(0,0)$ and a scale factor of $\frac{1}{2}$.

F

H

J

(Center of dilation of $(0,0)$ is there to sound technical and also tells us the point where these polygons are started.
Basically, don't let it confuse you!)
9.

The pentagon in the graph below is to be dilated by a scale factor of $\frac{1}{3}$.

Which graph shows this transformation?

H

G

The house is in a grid of 6 by 6 units. Draw the box grid of 6 by 6 around it to get the idea.

So it would have to shrink to a grid that is \qquad by \qquad that eliminates all but \qquad
10.

Parallelogram WBMP is shown on the grid below.

If WBMP is reflected across the line $y=-x$ and then translated 4 units down to become parallelogram $W^{\prime} B^{\prime} M^{\prime} P^{\prime}$, what will be the coordinates of M^{\prime} ?

F $(-6,-7)$
G $(6,-1)$
H $(6,7)$
J $(6,3)$

Graph $y=-x$
(Draw the line $y=-x$)

Now flip Point B over it. AND Graph new parallelogram

Where would that put M ? \qquad Watch out, if you are in a hurry you will choose the wrong answer, you are not yet finished!

Now move the new parallelogram down 4 units. Where is M ?

