Name \qquad Class Period \qquad
There are 21 problems and the class will divide into 7 groups. After round 1 , team members A will move forward and B will move backward. C and D will be stationary at all times. Each person will hand in the project with ALL work shown. Each station will be 10 minutes with 3 problems per station. 5 pts each... 105 max STATION 1

4

The water level in a creek was at a maximum height after a heavy rain. The water level in the creek receded at a constant rate for several hours until it leveled off to its regular height. Which of the following graphs best represents this information?
F

Rainwater
G

Rainwater
H

Rainwater
J

Rainwater

Run your finger along the graph as your read. Which graph follows the story?

6.

28 The blocks below are arranged in sequence to show a pattern.

Which expression can be used to determine the number of blocks at Stage n ?
F \sqrt{n}
G $\quad(n-1)+1$
H $2 n$
J n^{2}
5.

The pattern below represents the areas of several squares.

$$
1,9,25,49, \ldots
$$

This pattern was formed by changing the length of the sides of the squares. How does each new length compare to the previous length?

F Each new length is 2 units greater.

G Each new length is $2 \frac{1}{2}$ units greater.

H Each new length is 4 units greater.

J Each new length is 8 units greater.
How long is the side of a square with the area of 1 ? \qquad
9? \qquad
25? \qquad 49? \qquad How do these
compare? \qquad

Make a table:

Stage (n)	blocks
1	
2	
3	
4	
Now use $y=$ program	

The two bar graphs shown below represent the populations and land areas of four states.

Based on the information given in the bar graphs, which of these four states is the least densely populated?

A Indiana
B Louisiana
C Minnesota
D Wisconsin

- Below are congruent isosceles triangles arranged in a sequence to obtain a geometric pattern.

Which expression can be used to find the perimeter of a composite figure made up of t triangles arranged in this pattern?

F $12 t$
G $2 t+10$
H $\quad 5 t+2$
J $\quad 12 t-5$

Make a TABLE	
Triangles	Perimeter
1.	
2.	
3.	
4	

Now, did you find the perimeter or add up all the sides?

Mrs. Farmer asked her students to vote for their favorite vegetable. The number of votes each vegetable received is listed below.

- Beets received 17 votes.
- Carrots received 21 votes.
- Lettuce received 21 votes.
- Broccoli received 19 votes.
- Potatoes received 22 votes

If a circle graph is constructed using these data, which of the following tables best represents the central angle of each sector?
Students' Favorite Vegetable

Vegetable	Central Angle
Beets	17°
Carrots	21°
Lettuce	21°
Broccoli	19°
Potatoes	22°

H
Students' Favorite Vegetable

Vegetable	Central Angle
Beets	61°
Carrots	76°
Lettuce	76°
Broccoli	68°
Potatoes	79°

Students' Favorite Vegetable

Vegetable	Central Angle
Beets	61°
Carrots	76°
Lettuce	76°
Broccoli	79°
Potatoes	68°

Students' Favorite Vegetable

Vegetable	Central Angle
Beets	68°
Carrots	76°
Lettuce	76°
Broccoli	61°
Potatoes	79°

How many degrees in a circle? That eliminates one answer. \qquad has the least number of votes, so eliminate \qquad _. \qquad has most. Eliminate \qquad —
13.

The figure below shows a conical cup containing water. The water depth can be represented by x, and the area of the water surface can be represented by A. As the water depth changes, the area of the water surface changes, as shown in the table below.

Which equation best represents the relationship between the area of the water surface and the water depth?

F $A=\frac{\pi(2 x-1)^{2}}{16}$ in. 2

G $A=\frac{\pi x}{2}$ in. ${ }^{2}$
H $A=\frac{\pi x^{2}}{16}$ in. ${ }^{2}$
J $A=\frac{\pi x}{16}$ in. 2
This looks hard but is really just a $\mathrm{y}=$ problem. Change the areas to a decimal and use your y = program

Higher thought process. Each answer and equation has a π symbol in the top of the fraction, so we can just cross out all of them. Why? \qquad Now we don't have to worry about pi anymore.
14.

Casey conducted an experiment and recorded the data in the table shown below.

\boldsymbol{x}	\boldsymbol{y}
1	1
2	2
3	5
4	10

Which equation best describes these data?
F $y=x$
G $y=2 x-1$
H $y=x^{2}+x-1$
J $y=(x-1)^{2}+1$

15.

According to the data shown below, which
would be the best prediction of the number of passengers at the International Jetport for the year 2008?

Passengers at

 International Jetport| Year | Number of
 Passengers
 (millions) |
| :---: | :---: |
| 1980 | 30.6 |
| 1985 | 38.5 |
| 1990 | 46.4 |
| 1995 | 54.3 |
| 2000 | 62.2 |

A $\quad 70.1$ million
B 68.5 million
C $\quad \mathbf{7 4 . 8}$ million
D 78.0 million

What is the year interval on the chart? \qquad

What is the passenger interval? \qquad

So, how many
passengers in
2005? \qquad

2010? \qquad

2008? \qquad

10 The table below shows h, the approximate height of an Ameri-Willow tree after t years.

Age of Ameri-Willow (years)	Height of Ameri-Willow (feet)
1	8
3	25
6	49
7	57
9	70

Which equation best fits these data?
F $h=8.2+3.75 t$
G $h=1.12+7.82 t$
H $h=7.5+0.65 t^{2}$
J $h=-1.24+9.75 t$
$Y=$ will not get it.

This is a LINEAR Regression.

17
31 The figure below shows a partial view of Pascal's triangle.

If each square represents a missing number in Pascal's triangle, which of the following could not be a missing number used to complete the partial view of Pascal's triangle shown above?

A 24
B 15
C 35
D 10

The secret to Pascal's triangle, if you don't see it, is the lower number is the sum of the two above it.

18.

Draw the $4^{\text {th }}$ and $5^{\text {th }}$ squares here

How many units are taken out of the first squares shaded area \qquad
$2^{\text {nd }}$ square? \qquad $3^{\text {rd }}$ square? \qquad
$4^{\text {th }}$ square? \qquad $5^{\text {th }}$ square? \qquad

Difference between $5^{\text {th }}$ and $1^{\text {st }}$ \qquad
19.

A pharmaceutical company claimed that its product relieves acid indigestion more quickly than any other antacid. The company used the graph below to support its claim.

Effectiveness of Antacids

According to the graph, which statement best describes the company's product?

A Its product works faster than some brands but much slower than others.
B Its product works many times faster than the other brands.

C Its product works in about the same time as the other brands.

D Its product works somewhat slower than the other brands shown.

What is the range between the fastest and the slowest antacid? \qquad

Is that much of a difference? \qquad
20.

A student begins drawing a fractal by dividing each side of an equilateral triangle into 3 segments.

The student then replaces the middle segments with 2 equal segments to form the sides of smaller equilateral triangles

If the student repeats this process on the
12 sides of the second figure, how many sides will the next figure have?

F 24
G 36
H 48
J 60
21.

The table below shows the relationship between I, the current in milliamperes (mA) through a filament, and t, the filament's temperature in degrees Celsius.

Temperature, t $\left({ }^{\circ} \mathrm{C}\right)$	Current, I $(\mathrm{~mA})$
80	320
90	360
100	400
110	440

Which equation best represents the relationship between the quantities in the table?

A $\quad I=\frac{1}{4} t$
B $\quad I=\frac{1}{40} t$

C $I=40 t$

D $I=4 t$

Table of Values. X on the left. So I = \qquad and $\mathrm{t}=$
So, the new triangle is in the middle of the line with space on each side. So, if we add a layer, there still has to be spaces on each side of the new triangles. Use the $2^{\text {nd }}$ triangle and draw little triangles in the middle of each side and count.

