5PTS EACH 100

Tables of value problems are really just patterns for the correct equation and can be done by calculator.. Other pattern problems are handled without the calculator

- Y= method
- You have a table of x | y values. Even if they are called m and k, x is on the left and y is on the right, just change the letters.
- On a top bottom table, x is on top and y is on the bottom.
- Press the y= button. Type in your first answer. Press the yellow 2nd key and then the blue graph key. x, y tables will appear. Look up the x values and see if the y values match. If they do, it is the correct answer. If not, it is wrong.
- Yes, its that easy.
- Or, you can solve them by substitution.

1.

Which equation best describes the relationship between the corresponding values of *x* and *y* shown in the table?

x	у
-2	-12
0	-6
1	-3
4	6

F
$$y = x - 10$$

G
$$y = 2x - 8$$

H
$$y = 3x - 6$$

J
$$y = x^2 - 8$$

2.

Which expression can be used to find the values of s(n) in the table below?

n	1	2	3	4	5	6
s(n)	5	8	11	14	?	?

$$\mathbf{F} = 3i$$

$$\mathbf{G}$$
 5n

$$\mathbf{H} = n + 4$$

J
$$3n + 2$$

3.

13) Which function includes the data set {(2, 4), (6, 6), (12, 9)}?

$$A y = 2x$$

B
$$y = \frac{x}{2}$$

C
$$y = 2x - 9$$

D
$$y = \frac{x}{2} + 3$$

4.

Rita put some hummingbird feeders in her backyard. The table shows the number of hummingbirds that Rita saw compared to the number of feeders.

Bird-Watching

Number of Feeders	Number of Hummingbirds
1	3
2	5
3	7
4	9
5	11

Which equation best describes the relationship between h, the number of hummingbirds, and f, the number of feeders?

F
$$h = 2f + 1$$

G
$$f = 2h + 1$$

H
$$h = f + 2$$

J
$$f = \frac{h+1}{2} + 1$$

These tables are like ordered pairs.

- x is on the left, y on the right. So, in this problem, **f** is x and h is y. Change all the letters in the answers to x and y.
- You can eliminate G and J as they are x =, not y = answers.

5.

 \mathbf{G}

Jerome received a gift card for \$20 worth of video rentals from a video store. If the cost of renting a video is \$2.50, which table best describes b, the balance remaining on the gift card after he rents n videos?

	n	ь
	0	\$20.00
\mathbf{F}	1	\$17.50
	2	\$15.00
	4	\$10.00
	6	\$5.00

	n	\boldsymbol{b}
	1	\$17.50
Н	2	\$15.00
	3	\$13.50
	4	\$11.00
	5	\$8.50

n	ь
0	\$20.00
2	\$17.50
4	\$15.00
6	\$12.50
8	\$10.00

n	b
0	\$20.00
1	\$15.00
4	\$10.00
6	\$2.50
8	\$0.00

Write an equation. Starts with \$20 and then subtracts 2.50 for each video rented Y = 20 -______ Then use y = program

J

Use Y= as a short cut

6.

Which linear function contains the points (-3,10) and (-2,7)

$$\mathbf{F} = f(x) = 3x + 10$$

$$G \quad f(x) = \frac{1}{3}x + 2$$

$$\mathbf{H} \quad f(x) = 3x - 6$$

J
$$f(x) = -3x + 1$$

- Hint- f(x) = y
- Make an x | y table of these 2 points:
- Now solve.

7.

Which equation is best represented by a line containing the points (2, -5) and (4, 3)?

A
$$x + 4y = 13$$

B
$$v = 4x + 13$$

$$\mathbf{C} \quad y = -4x + 19$$

D
$$-4x + y = -13$$

Try the two that start with y =.

If they don't work, you will need to use substitution or change the equation to y = form.

8.

The figure below shows a partial view of Pascal's triangle.

Pascal's Triangle

Row 1: 1

Row 2: 1 1

Row 3: 1 2 1

Row 4: 1 3 3 1

Row 5: 1 4 6 4 1

Which row of numbers best represents the seventh row in Pascal's triangle?

F 1 5 10 10 5 1

G 1 6 15 20 15 6 1

 \mathbf{H} 1 7 21 35 35 21 7 1

J 1 8 28 56 70 56 28 9 1

How many numbers in row 1?

• Row 2?

Row 3?

• So how many in row 7?_____ Answer____

That was quick.

• Now, look at the other patterns in this triangle.

 How do I know the answer will start with 1 6 and end in 6 1? 9.

The table below shows the number of sides and diagonals in certain polygons.

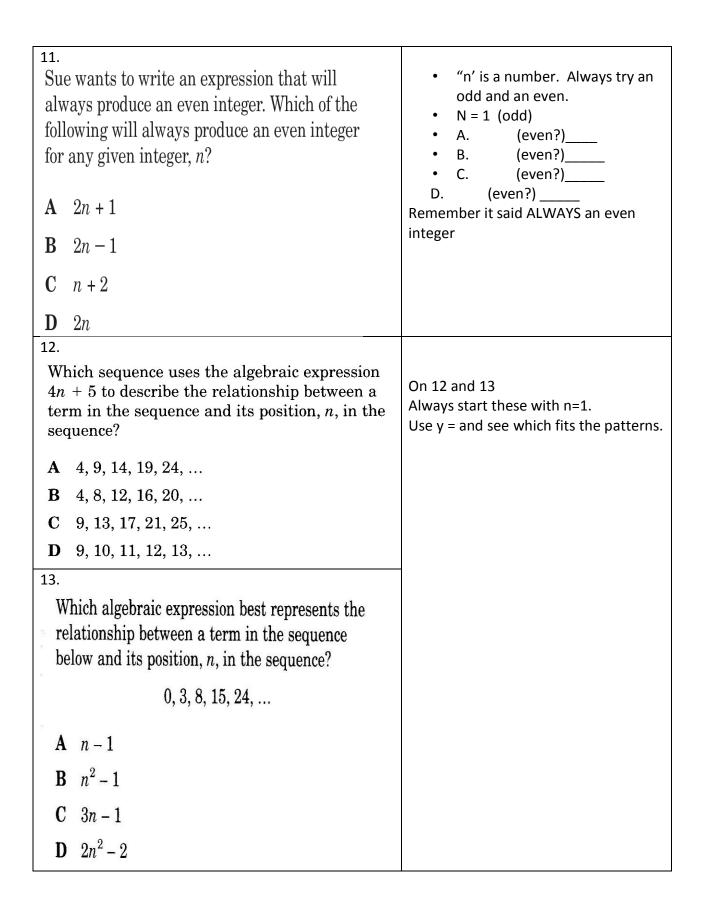
Number of Sides	Diagram	Number of Diagonals	
3		0	}2-0=
4		2	.}5-2= <u> </u>
5		5	}9-5=
6		9	} -9=

Find the intervals between the values of the number of sides and the number of diagonals and see if you can see a pattern.

Based on the table, how many diagonals should a 9-sided convex polygon have?

s snould

10.


A pattern exists as a result of raising i, an imaginary number, to n, an integer greater than or equal to 1.

Powers of i

$i^n (n \ge 1)$	Solution	
$i^{\scriptscriptstyle 1}$	$\sqrt{-1}$	
$i^{_2}$	-1	
$i^{_3}$	$-i$ \blacktriangle	
i^{4}	1	
i^{5}	$\sqrt{-1}$	
i ⁶	-1	

$$i^7 =$$
 $i^8 =$
 $i^9 =$

- Who cares what "I" and all that stuff means.
- Look for the pattern. In fact, cross out the "I"s in the first column and look for the pattern in the second column.
- Make it easier, make the sq root of -1 a rectangle
- Make -1 a circle
- Make 1 a triangle
- Make i a star.
- Now we are back to elementary school patterns.
- Question, what represents i to the 16th power?

14.				
Stag	e 1			
Stag	e 2			
Stag	e3			
Stag	e 4			
WI F	Square hich expression can be used to determine the number of squares at stage n ? $5n-3$			
л Н С	$4n-2$ $2n^2$ figure out what n is n^2+n			
Linda owns a set of seven wrenches. The wrenches come in consecutive increments of $\frac{1}{8}$ inch. Linda has misplaced a wrench. The sizes she has are $\frac{1}{8}$ inch, $\frac{1}{4}$ inch, $\frac{1}{2}$ inch, $\frac{5}{8}$ inch, $\frac{3}{4}$ inch, and $\frac{7}{8}$ inch. Which size wrench is missing from Linda's set? A $\frac{3}{16}$ in. B $\frac{3}{8}$ in. C $\frac{11}{16}$ in.				
D Not here				
Write your fractions to one by eights: 1/8,,,, 1 What's missing?				
16. The integers 1881, 353, 2002, and 787 are palindrome integers. Which of the following is also a palindrome integer?				
G :	1961 828 2525 783			
Raceca	r, mom, dad are palindrome words. What is a palindrome number?			
Carefulis 2525 a palindrome or just a repeating number?				

17.

0

A pattern exists for digits in the ones place of the value that results from raising 7 to the power of n, where n is an integer greater than or equal to 1.

Digits in Ones Place of 7°

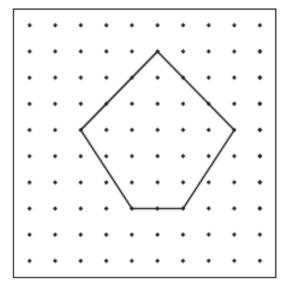
7 ⁿ	Value	Digit in Ones Place
71	7	7
7 ²	49	9
7°	343	3
7⁴	2,401	1
7⁵	16,807	7
7€	117,649	9
77	823,543	3

 \mathbf{F}

G = S

Н з

J 1


 That is 7⁵⁰ Your calculator won't give you an answer for that. Try it 									
So what is the pattern?			H	How often does it repeat?					
Ok, So how many times will the pattern repeat in 50? $\left(\frac{50}{4}\right) = ?$ So on 49, the pattern									
will start fresh: _				,	,				
	49	50	51	52					

18.

Lee, Kelly, Linda, and Madison all took the same math test. Linda earned a lower score than Kelly, but she did not earn the lowest score. The highest test-scorer's name does not begin with an L. Madison earned a higher score than Kelly. Which person earned the lowest score on the math test? This is a "game" problem. 1/3 of the entrance exams for law school are game problems. Order these kids.

- A Kelly
- B Lee
- C Linda
- D Madison

The horizontal distance and the vertical distance between the pegs on the geoboard shown below each represent 1 unit.

Which is closest to the area of the polygon modeled on the geoboard?

- A 34 units²
- B 27 units²
- C 21 units²
- D 17 units²
 - Connect the dots inside the pentagon that make complete squares and count them. Shade them in. . ______
 - Now, how many half squares are there? _____ Shade them in. _____
 - Total
 - Now estimate the remaining area and decide which is closest.

20.

Write an equation for the following table using a linear regression.

Round to Hundredths Place.

x	У
-6	-3
-1	-2
2	2
3	4
5	5
7	8

y=	=			