RATIOS - Notes and Homework: DUE ON EXAM

Ratios are not as easy as you think. Be careful in your reading of the problems so that you don't get caught in a trap!

Ratio- a comparison of two quantities.
The ratio of \boldsymbol{a} to \boldsymbol{b} may be written as $\boldsymbol{a}: \boldsymbol{b}$ (odds notation) or $\frac{\boldsymbol{a}}{b}$ (fraction notation)
Proportion - when 2 ratios are equivalent we can write: $\frac{1}{12}=\frac{2}{24}$
Example: There is one faculty member for every 15 students at a college. Write this ratio in odds notation:

Write this ratio in fraction notation:

There are 675 students. How many faculty members are there?

Example: Inks Lake has a ratio of ducks to geese of $\mathbf{1 6 : 9}$ (for every 16 ducks there are 9 geese),
> If there are 192 ducks, how many geese are at the lake?
> Suppose there are 400 ducks and geese total. How many geese are there?
Note that the total water fowl is 400 . What is the total water fowl in our ratio? 16 ducks and 9 geese make a total of 25 birds. We now need to analyze this based on the number of geese out of the number of total birds!!!

Set up a table

ducks	16	d
geese	9	g
total	25	400

Now here is a real live TAKS Question!
The Hawthorne Mustangs have won 4 games and lost 6 games this season. Based on these results, which is the best prediction of the number of games the Mustangs must play in order to win 6 games?

F 8
G 9
H 12
J 15

Again here is the trap. If we go about our merry way and don't carefully read this problem here is what we will more than likely do:
win 4 and lose 6 so that is a ratio we want 6 wins and $x ; 4$ compares to 6 and 6 compares to x, right????
4: 6
6: x cross multiply: $4 x=6 \cdot 6$
$4 x=36 \quad \therefore x=9$
Think about that answer. Did we use the right ratios to make a proportion?

$$
\frac{\text { wins }}{\text { losses }}=\frac{\text { wins }}{\text { losses }} \quad \text { vs. } \quad \frac{\text { wins }}{\text { total games }}=\frac{\text { wins }}{\text { total games }}
$$

Set up a table with your data and unknowns:

wins	4	6
losses	6	l
total games	10	t

Unit Rate - a form of a ratio in which the two terms have different units. A unit rate is a rate which has a denominator of 1 . So a car travelling at a rate of 120 miles in 2 hours has a rate of $\frac{120 \text { miles }}{2 \text { hours }}$ the car has a unit rate of $\frac{60 \text { miles }}{1 \text { hour }}$
Example: Takeru Kobayashi of Japan ate 53.5 hotdogs in 12 minutes to win a contest. Find the unit rate. Round to the nearest hundredth.

Example: Cory earns $\$ 52.50$ in 7 hours. What is his unit rate?

Conversion factor - a rate in which the 2 quantities are equal but use different units are called conversion factors. $\frac{12 \mathrm{in}}{1 \mathrm{ft}} \quad \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \quad \frac{5280 \mathrm{feet}}{1 \mathrm{mile}}$

Example: The dwarf sea horse Hippocampus zosterae swims at a rate of 52.68 feet per hour. What is the speed in inches per minute?

Dilation -is a transformation that produces an image that is the same shape as the original, but is a different size. A dilation either stretches or shrinks the original figure. A dilation needs a scale factor.

The scale factor may be presented as a number. To determine the scale factor you must know whether you going from: big to little or little to big

To shrink we go from big to little. The scale factor will be: $0<s<1$; that is, a fraction. To stretch we go from little to big. The scale factor will be: $s>1$; that is a number greater than 1 .

Example: given a rectangle with dimensions of 4×6 if it is enlarged by a scale factor of 4. What are the new dimensions?

If the scale factor is 0.5 , what are the new dimensions?

Example: Think of it as, what do you multiply the first measurement to get the second measurement? ? $\times s_{1}=s_{2}$

What is the scale factor from A to B ?

What is the scale factor from B to A ?

What is the measurement of the missing side?

???

A house plan has a scale factor of $1: 12$. (1 inch:12 feet) If the plan shows the house width to be 4.5 inches long, How wide in feet is the actual house? Always write what you are comparing as a proportion, so here: $\frac{\text { plan }}{\text { actual }}=\frac{\text { plan }}{\text { actual }}$

RATIO BASICS HOMEWORK

NAME \qquad CLASS PERIOD

1. The ratio of freshman to sophomores in a drama club is 5:6. There are 18 sophomores in the drama club. How many treshmen are there?
\qquad _

Find each unit rate.
2. Four pounds of apples cost $\$ 1.96$. Sal washed 5 cars in 50 minutes.
4. A giraffe can run 32 miles per hour. What is this speed in feet per second? Round your answer to the nearest tenth.

Solve each proportion.

5. $\frac{y}{4}=\frac{10}{8}$
6. $\frac{2}{x}=\frac{30}{-6}$
7. $\frac{3}{12}=\frac{-24}{m}$
8. $\frac{3 t}{10}=\frac{1}{2}$
9. $\frac{32}{4}=\frac{b+4}{3}$
10. $\frac{7}{x}=\frac{1}{0.5}$

TAKS:
11. Samis buidinga moded od an antioue car: The scale of his moded to the actual arais t:10. His mode is is in' inchese Ing. How ongig the actual car?
12. The scale on a map of Virginina stovs thati 1 cerimeter reperesent 30 miles. The actua disancect tom Richmond,
NAtoWashingoon, DCis 110 miles, On the map, how mary
cenimmeders axe between the wwo cities? Pound your answer
to the neaesesterth:

