Algebra 1

Lesson 9.9 - The Quadratic Formula

Mrs. Snow, Instructor

So far, you have learned that a quadratic equation can be solved by graphing, factoring, and square rooting. There is yet another method of factoring called the Quadratic Formula. Briefly stated:

- Given a quadratic equation $a x^{2}+b x+c=0$, the roots or zeros can be found by the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: Solve

$$
x^{2}-2 x-3=0
$$

LOOK OUT FOR NEGATIVE SIGNS!
the coefficients of the terms are: $a=1, b=-2, c=-3$

$$
\begin{gathered}
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-3)}}{2(1)} \\
x=\frac{2 \pm \sqrt{4+12)}}{2} \\
x=\frac{2 \pm \sqrt{16}}{2} \\
x=\frac{2 \pm 4}{2} \\
x=\frac{2+4}{2}=\frac{6}{2}=3 \text { OR } x=\frac{2-4}{2}=\frac{-2}{2}=-1
\end{gathered}
$$

Solve using the Quadratic Formula

$-3 x^{2}+5 x+2=0$	$x^{2}+7 x+10=0$	$2 x^{2}+4 x=21$

-We have 3 possibilities for solutions. When graphed, we can quickly see the solutions:

What part of the quadratic formula will determine whether we have $1-2$ - or no real solutions?

The discriminant of a quadratic equation is $\boldsymbol{b}^{2}-\mathbf{4 a c}$. This expressions will help your to determine how many and what kind of roots a quadratic equation will have.

- If $b^{2}-4 a c>0$, positive then the quadratic equation will have TWO real roots.
- If $b^{2}-4 a c=0$, equal to zero then the quadratic equation will have ONE real root.
- If $b^{2}-4 a c<0$, negative then the quadratic equation will have NO real roots.

Example: How many and what kind of roots does $y=x^{2}-10 x+3$ have?

$$
\begin{array}{rlrl}
b^{2}-4 a c & =(-10)^{2}-4(1)(3) & & \text { Coefficients: } a=1 . B=-10, c=3 \\
& =100-12=\mathbf{8 8} & \mathbf{8 8}>0 \therefore 2 \text { real roots }
\end{array}
$$

you try:

$\mathrm{x}^{2}-9 \mathrm{x}+4=0$	$2 \mathrm{x}^{2}-2 \mathrm{x}+3=0$	$x^{2}+4 x+4=0$

