Algebra I

Lesson 9.5 - Solving Quadratic Equations by Graphing

Mrs. Snow, Instructor
When we work with a quadratic function we are looking at the relationship between the independent variable \mathbf{x} and the dependent variable \mathbf{y}. These variables seem random, but if we apply real life situations to the variables we will see a need using quadratics. When we lob a projectile over a castle wall how can we determine the maximum height? How long will it take before it lands? What about a dolphin leaping out of the water; how high will it go, and how long before it reenters the water? The height of a football may be modeled by a quadratic equation. The number of bacteria in refrigerated food is related to the temperature at which it is kept, and yes, this too is a quadratic equation. What is most frequently looked for is where the parabola crosses the x -axis. Hence we set the quadratic equal to zero, and solve for values of x when $\mathrm{y}=0$. (yes, we also look for the minimum and maximum too).

Vocabulary

Quadratic equation - a single variable $2^{\text {nd }}$ degree polynomial equation written in terms of \mathbf{x} and equal to zero.
Standard form - $a x^{2}+b x+c=0$
Solution to a quadratic equation - with $y=0$, solutions are x-intercepts.
X-intercepts - zeros, roots, solutions. You must be comfortable and recognize each of these terms as meaning the same thing. Answers will be written either as $x-y$ ordered pairs, $(x, 0)$ or in set notation listing the $\mathrm{x}=$ solutions, $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$

Solving a quadratic equation may be accomplished by graphing. To graph we need to go back to the function form: $a x^{2}+b x+c=0$. The solutions will be the x-intercepts. Remember! There may be 1,2 or no x-intercepts/solutions.
Graph the following equations:

$\begin{gathered} x^{2}-8 x-16=2 x^{2} \\ -x^{2}-8 x-16=0 \\ x=-\frac{b}{2 a}=-\frac{(-8)}{2(-1)}=-\frac{8}{2}=-4 \\ -(-4)^{2}-8(-4)-16=0 \\ =-4 \text { axis of symmetry } \&(-4,0) \text { vertex } \\ c=-16, \quad \text { the y incpt. } \\ \text { LC is negative: opens down } \\ x-4 \quad-3 \end{gathered}$	1. Get into standard form 2. Rewrite in the related function form $(y=0)$ 3. Calculate the axis of symmetry 4. the axis of symmetry will lead us the vertex 5. c is the y-intercept; 6. leading coefficient \pm, are we happy/open up or sad/open down? 7. Calculate 2 other points
$\begin{array}{l\|lll} \hline \mathrm{y} & 0 & -1 & -4 \end{array}$ zero: - 4	8. Graph the points and reflect them across the axis of symmetry. 9. Carefully graph your parabola. Where does the parabola cross the x-axis? These values will be your zeros/solutions/x-intercepts/roots.

You try:
6x 10 $-x^{2}$

