Algebra I

Lesson 9.4 - Transforming Quadratic Equations

Mrs. Snow, Instructor

Back in Chapter 5 we were introduced to function families and in particular the linear family of functions. We discovered that by changing values of the slope and y-intercept, we could accurately predict how the nature of the line would change through transformations and translations. Today we will study in detail the Quadratic Parent Function and how it may be transformed.

Vocabulary:
Quadratic parent function $f(x)=x^{2}$ This is the simplest form of the quadratic function and is identified as the parent function.

1. The axis of symmetry is $x=0$;
2. the vertex is $(0,0)$; and
3. the function only has one zero, $(0,0)$

The values of a, b, and c all affect the nature of the parabola. Below are some of the possible transformations:

$$
f(x)=x^{2}
$$

or $y=x^{2}$
a ne gative reflects the parabola
a cross the x - axis

$$
\begin{gathered}
f(x)=x^{2} \\
g(x)=x^{2}+4
\end{gathered}
$$

y -intercept is (0,4)
\uparrow translated up for $c>0$

$$
h(x)=x^{2}-4
$$

y-intercept is $(0,-4)$
\downarrow translated down for $c<0$
The value of c determines the value of the y-intercept.
 It also determines the vertical translation.

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=(x+4)^{2} \\
& \leftarrow \text { translated to the left } \\
& h(x)=(x-4)^{2} \\
& \rightarrow \text { translated to the right } \\
& \text { in Algebra } 1 \text { you will see the left/right movement with } \\
& \text { the presence of the } b x \text { term in the quadratic equation. }
\end{aligned}
$$

Order the functions from narrowest to widest

$$
\begin{aligned}
& f(x)=\frac{3}{4} x^{2}, \quad g(x)=-2 x^{2}, \quad h(x)=-8 x^{2}, \quad j(x)=\frac{1}{2} x^{2} \\
& f(x)=x^{2}, \quad g(x)=-\frac{4}{5} x^{2}, \quad h(x)=3 x^{2}, \quad j(x)=\frac{1}{2} x^{2}
\end{aligned}
$$

Compare the graph of each function with the graph of $f(x)=x^{2}$

$$
g(x)=x^{2}+6 \quad g(x)=\frac{1}{3} x^{2} \quad g(x)=-2 x^{2}+5 \quad g(x)=-\frac{1}{4} x^{2}-2
$$

