Algebra 1

Lesson 8.5: Factoring Special Products

Mrs. Snow, Instructor

The ability to see a pattern can save you a lot of time and energy when you are factoring a polynomial.

Vocabulary: Perfect Square - a trinomial where the first and last terms are perfect squares and the middle term is 2 times the factor of the first term and last term.

There are 2 forms of a perfect square:

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

Factor:

$$
\begin{gathered}
x^{2}+12 x+36 \\
\vee \\
\downarrow \cdot x+2(6) x+6 \cdot 6 \\
\therefore \\
(x+6)^{2}
\end{gathered}
$$

1. Is the first term a perfect square?
2. Is the last term a perfect square?
3. Linear term=2ab?
4. So factor using the pattern of a perfect square.

Factor if possible:

$$
x^{2}+4 x+4 \quad x^{2}-14 x+49 \quad 9 x^{2}-6 x+4
$$

Another important polynomial pattern to remember is the difference of two squares. The term is selfdescribing, that is, it is what it is called: two terms that are perfect squares and are subtracted from each other.

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Factor:

$$
\begin{gathered}
x^{2}-16 \\
x^{2}-4^{2} \\
(x+4)(x-4)
\end{gathered}
$$

1. First and last terms are perfect squares
2. They are subtracted from each other.
3. Factor per equation.

You try:
$x^{2}-25$
$x^{2}-49$
$4 x^{2}-36$

A company produces square sheets of aluminum. Each has an area of $\left(9 x^{2}+6 x+1\right) m^{2}$. The side length of each sheet is in the form of $c x+d$, where c and d are whole umbers. Find an expression in terms of x for the perimeter of a sheet. When $x=3$ meters, what is the perimeter?

