Algebra I Lesson 8.4: Factoring $ax^2 + bx + c$, (where $a \neq 1$) Mrs. Snow, Instructor

Now what do we do when we have a leading coefficient that is not equal to 1? we do!!! The textbook suggests to start guessing and checking for possible factor combinations, but if you

closely follow the slick little method presented below you will never need to guess and check!

Factoring Flow Chart for: $ax^2 + bx + c$	
+ac + b - b + b + b + b + b + b + b + b + b	-ac $+b$ $-b$ $(+big)(-small)$ $(-big)(+small)$
(4)(5) = 20, 4+5=9 (-5)(-12) = 60, (-5)+(-12) = -17 (-5)(-12) = -17 ($ \begin{vmatrix} (-3)(10) = -30, \ (-3) + (10) = 7 & (1)(-8) = -8, \ (1) + (-8) = -7 \\ 5x^2 + 7x - 6 & 2x^2 - 7x - 4 \\ & \swarrow \\ 5x^2 - 3x + 10x - 6 & 2x^2 + 1x - 8x - 4 \\ x(5x - 3) + 2(5x - 3) & x(2x + 1) - 4(2x + 1) \\ (5x - 3)(x + 2) & (2x + 1)(x - 4) \end{vmatrix} $

ectoring Flow Chart for $ax^2 + bx + c$

No, that is not what

 $6x^2 + 14x + 4 10n^2 - 17n + 7$

Factor:
$$9x^2 + 9x + 2$$

When "c" is negative we follow the same process, simply watch your signs: product $a(c) = \pm$? $5x^2 + 9x - 18$ $3x^2 - 4x - 15$ $-4x^2 - 4x + 15$

.