Algebra I

Lesson 7.8: Special Products of Binomials.

Mrs. Snow, Instructor

There are some special forms of binomial products that we should remember. When finding the area of a square where the side is a binomial, we can use our FOIL Method, but the important thing to observe is the pattern that is generated:

| $(a+b)^{2}$ 1. expand
 $(a+b)(a+b)$ 2. FOIL
 $a^{2}+a b+a b+b^{2}$ 3. combine like terms
 $a^{2}+2 a b+b^{2}$
 4. Note the pattern: the first term is squared and added to 2 times the
 product of the terms, and the square of the last term is added. |
| :--- | :--- |

Multiply, what pattern to you see?

$(a-b)^{2}$	$(a+b)(a-b)$
	This is called the difference of two squares!

In summary we have 3 special forms of binomial products. These patterns are short cuts to the FOIL method:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)(a-b)=\left(a^{2}-b^{2}\right)
\end{aligned}
$$

Using our special forms, expand the following binomial products:

$$
(5 a+b)^{2} \quad(x-7)^{2} \quad(x+8)(x-8)
$$

$$
\left(1+c^{3}\right)^{2}
$$

$$
(3 b-2 c)^{2}
$$

$$
\left(x+2 y^{2}\right)\left(x-2 y^{2}\right)
$$

