Algebra I

Lesson 7.7 Multiplying Polynomials

Mrs. Snow, Instructor

By using the properties of exponents that were presented in the first part of the chapter, we can multiply polynomials.

Multiply:
use your distribution property!

$\left(5 x^{3}\right)\left(3 x^{4}\right)$	$\left(3 x^{2}\right)\left(6 x^{2}\right)$	$\left(2 r^{2} t\right)\left(5 t^{3}\right)$	$2 x\left(4 x^{2}+x+3\right)$	$5 r^{2} s^{2}(r-3 s)$
group factors with				
like bases together:				
(5) $(3)\left(x^{3}\right)\left(x^{4}\right)$ simplify: $\therefore=15 x^{7}$				

When we need to multiply a binomial by a binomial, we still use the distributive property, however, we distribute (multiply) each term of the first binomial to the second binomial. This technique is also called the FOIL Method: Multiply the First terms, multiply the Outer terms, multiply the Inner terms, and then multiply the Last terms.

$(x+3)(x-4)$ multiply x times each term of the $2^{\text {nd }}$ binomial. then multiply 3 times each term of the $2^{\text {nd }}$ binomial.	$(a+4)(a+5)$	$\left(2 a-b^{2}\right)\left(a+4 b^{2}\right)$	$(x-3)^{2}$

Follow the distribution rule and multiply:

$(x-2)^{3}$	$(x+2)\left(2 x^{2}+4 x-5\right)$	$(3 x+2)\left(x^{2}+3 x+4\right)$

