Algebra I

Lesson 7.4 Division Properties of Exponents
 Mrs. Snow, Instructor

If we can multiply exponential numbers, we can also divide exponential numbers.

Here is a basic rule for division:

Rule:	Example: a^{n} a^{m} $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$ $\frac{x^{9}}{x^{5}}=\frac{x x x x x x x x}{x x x} x^{9-5}=x^{4}$ $\left(\frac{x}{y}\right)^{5}=\frac{x^{5}}{y^{5}}$

Simplify:

$$
\frac{2^{9}}{2^{7}}
$$

$\frac{y}{y^{4}}$

$$
\frac{6.4 \times 10^{7}}{8 \times 10^{3}}
$$

$\left(\frac{2^{3}}{3^{2}}\right)^{2}$

$$
\left(\frac{a b^{4}}{c^{2} d^{3}}\right)^{5} \quad \frac{m^{5} n^{4}}{\left(m^{5}\right)^{2} n} \quad\left(\frac{a^{3} b}{a^{2} b^{2}}\right)^{3} \quad \frac{3^{5} \cdot 2^{4} \cdot 4^{3}}{3^{4} \cdot 2^{3} \cdot 4^{6}}
$$

$\left(\frac{4}{3^{2}}\right)^{-3}$
$\left(\frac{2 a}{b^{2} c^{3}}\right)^{-4}$
$\left(\frac{S}{3}\right)^{-2}\left(\frac{9 s^{2}}{t}\right)^{-1}$
$\left(\left(\frac{s}{3}\right)^{-2}\left(\frac{9 s^{2}}{t}\right)^{-1}\right)^{0}$

