Algebra I Lesson 7.2 – Powers of 10 and Scientific Notation Mrs. Snow, Instructor

If we were to want to write the weight of an atomic particle or the distance to a far off galaxy, we would be writing some extremely small or large numbers. Scientists have a way to deal with this dilemma it is called **scientific notation.** For example instead of writing a decimal number 0.00000000023. we can write in scientific notation and have: 2.3×10^{-11} . Really? Well that is a multiplication sign between the two numbers and we need to think of 2.3×10^{-11} as a product of two numbers: 2.3, the digit term and 10^{-11} as an exponential term. Doing our multiplication.... we would eventually get our teeny tiny decimal number.

Vocabulary

Scientific Notation – standard format for expressing very large and very small numbers. A number is written in 2 parts. First part is a number greater than or equal to 1 and less than 10. The second part is a power of 10:

$$2.3 \times 10^5 = 2.3 \times 100000 = 230000$$

Standard Form - The usual way that a number is written (not scientific form)

Complete the table below:

Power	10 ³	10 ²	10 ¹	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	
Value	1000	_	10	1				
	•	1	1				1	
$\div 10$								

Notice how we are dividing by 10 between each number. AND THE BASE IS ALWAYS 10

To write in powers of 10:	
$10^{-3} = .001$	Start with the number 1 and move the decimal point.
\leftarrow	When a negative exponent move to the left
	exponent number of times.
$10^4 = 10000$	
\rightarrow	When a positive exponent move to the right exponent number of
	times.
$10,000,000 = 10^7$	When the number is greater than 0, count the number ofplaces to
←	get to the 1, this is your exponent value.
$0.000001 = 10^{-6}$	The decimal is exponent places to the left of 1 so the exponent is
→	negative

Find the value of each expression.

106	10 ⁻⁵	853.4×10^{5}
0.163×10^{-2}	Write each number as a power of 10: 100,000,000,000	. 000000000001

