Algebra I

 Lesson 7.2 - Powers of 10 and Scientific Notation

 Lesson 7.2 - Powers of 10 and Scientific Notation
 Mrs. Snow, Instructor

If we were to want to write the weight of an atomic particle or the distance to a far off galaxy, we would be writing some extremely small or large numbers. Scientists have a way to deal with this dilemma it is called scientific notation. For example instead of writing a decimal number 0.000000000023 . we can write in scientific notation and have: 2.3×10^{-11}. Really? Well that is a multiplication sign between the two numbers and we need to think of 2.3×10^{-11} as a product of two numbers: 2.3 , the digit term and 10^{-11} as an exponential term. Doing our multiplication.... we would eventually get our teeny tiny decimal number.

Vocabulary

Scientific Notation - standard format for expressing very large and very small numbers. A number is written in 2 parts. First part is a number greater than or equal to 1 and less than 10 . The second part is a power of 10 :

$$
2.3 \times 10^{5}=2.3 \times 100000=230000
$$

Standard Form - The usual way that a number is written (not scientific form)

Complete the table below:

Notice how we are dividing by 10 between each number. AND THE BASE IS ALWAYS 10

```
To write in powers of 10:
10-3}=.00
    \leftarrow
104}=1000
    ->
10,000,000 = 107
        \leftarrow
0.000001 = 10-6
    ->
```

Start with the number 1 and move the decimal point.
\longleftarrow When a negative exponent move to the left exponent number of times.

When a positive exponent move to the right exponent number of times.

When the number is greater than 0 , count the number ofplaces to get to the 1 , this is your exponent value.

The decimal is exponent places to the left of 1 so the exponent is negative

Find the value of each expression.

10^{6}	10^{-5}	853.4×10^{5}
0.163×10^{-2}	Write each number as a power of $10:$ $100,000,000,000$.0000000000001

Jupiter's diameter is about $143,000 \mathrm{~km}$. Write this in scientific notation.	Jupiter's orbital speed is approximately $1.3 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}$ write in standard form.

Are these numbers in scientific notation? Correct if necessary
8.1×10^{-2}
7×10^{8}
50×10^{-3}
. 01
0.25×10^{3}
3.5×10^{-6}

