Algebra I

Lesson 6.4 - Solving Special Systems

Mrs. Snow, Instructor

For review solve the following system of equations:
$\left.\begin{array}{l}y=x-1 \\ -x+y=2\end{array}\right]\left\{\begin{array}{c}y=2 x+1 \\ 2 x-y+1=0\end{array}\right\}$

Really? What is going on? The variables all dropped out. We were left with 2 statements; are the statements true or false? Graph the systems what do you find? Does the false statement graph out as parallel lines? The true as the same line?

Vocabulary

Dependent system - a system of equations that has infinitely many solutions. If graphed, the 2 equations will graph as the same line (Slopes and y-intercepts are the same). When solving algebraically, the variables will cancel out and you will have a true statement. Since there is at least one solution, this system is also consistent.
Inconsistent - systems that have no solutions. The graph will be of 2 parallel lines (Parallel lines will have the same slope with different y-intercepts!) When solved algebraically the variables will cancel out and you will be left with a false statement.

Independent - a system of equations that have only one unique solution. When graphed you will see 2 distinct lines intersecting at one point. Since one solution is "at least" one solution, this system is also consistent.

Classify the systems and give the number of solutions.

$$
\left\{\begin{array} { c }
{ x + 2 y = - 4 } \\
{ - 2 (y + 2) = x }
\end{array} \quad \left\{\begin{array}{c}
y=-2(x-1) \\
y=-x+3
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{c}
2 x-3 y=0 \\
y=\frac{2}{3} x
\end{array}\right.
$$

