Algebra I Lesson 6.3 – Solving Systems by Elimination Mrs. Snow, Instructor

We found that graphing is not always the best method for solving systems. Likewise substitution is not always
easy. When would substitution be difficult?Another method we can employ is elimination.

Vocabulary

Elimination – a method to solve systems of equations. **Add** the two equations together. When the equations are combined into one equation, <u>one of the variables is eliminated</u>. The end result is a single equation with one variable. (and guess what? Back to chapter 2, again)

When Sam went to lunch with his friends, he got a	
speeding ticket. He thought it wise to get a bouquet	1. Identify what you need to answer.
of flowers for his mom to accompany the news. He	2. Underline the facts as they relate to the equations.
spent \$24.75 and bought <u>12 flowers</u> . The bouquet	
was a mix of roses and daisies. The roses cost \$2.50	3. Write a system of equations. Consider using initials
each and the <u>daisies cost \$1.75</u> a piece. <u>How many of</u>	of the flowers for the variables.
each type of flower did Sam buy? Did the bouquet	
make the news of the traffic ticket easier for his mom?	4. If we want to add these equations together so to
2.50r + 1.75d = 24.75	eliminate one of the variables, what do we need to
r + d = 12	do? Choose a variable to eliminate.
	Multiply that equation by a number so that when
2.50r + 1.75d = 24.75	equations are added together one of the variables
(-1.75)(r+d) = (12)(-1.75) distribute	cancels out.
2.50r + 1.75d = 24.75	5. Solve for the remaining variable.
-1.75r - 1.75d = -21 add	6. Substitute the solution for the variable into one of
.75r = 3.75	the equations and solve for the remaining variable.
r = 5	
5 + d = 12	7. Make sure to answer the question completely using
d = 7	a sentence
Answer: Sam bought 5 roses and 7 daisies.	
Mom was still really mad, but she hugged Sam and	
was glad he was safe.	

List some reasons why one method may be preferable over the other. Write an example.

Graphing:	Substitution:	Elimination:

Solve the system by elimination. $ \begin{cases} x - 2y = -19 \\ 5x + 2y = 1 \end{cases} $	$\begin{cases} x + 3y = -7\\ -x + 2y = -8 \end{cases}$
$\begin{cases} 5x + y = 0\\ 5x + 2y = 30 \end{cases}$	$\begin{cases} 2x - 3y = 14\\ 2x + y = -10 \end{cases}$
$\begin{cases} 3x + y = 17\\ 4x + 2y = 20 \end{cases}$	$\begin{cases} 4x - y = -5\\ -2x + 3y = 10 \end{cases}$