## Algebra I

## Lesson 5.5 - Direct Variation

## Mrs. Snow, Instructor

A job at a manufacturing plant pays $\$ 10.00$. This table shows the relationship between the hours worked and dollars earned. Here we see that dollars earned is equal to the number of hours worked multiplied by 10.

| Hours worked | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dollars earned | 0 | 10 | 20 | 30 | 40 |

## Vocabulary

Direct variation - a linear relationship written in the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$, so, that we have a constant rate of change, either negative or positive.
Constant of variation - the variable $\boldsymbol{k}$ is a nonzero constant where, $k=\frac{\Delta y}{\Delta x}$
Varies directly - whenever you see these words remember " $k=$ "

Examples: Graph the following equations and LABEL:
$y=3 x$

$$
y=1 / 2 x
$$

$$
y=-4 x
$$

$$
y=2 x
$$

$y=-3 x$
$y=-1 / 2 x$
set up a table of values!!
x
y


What do you notice about the constant $k$ ? Is it equal to something previously studied??

If a linear equation is considered to be a direct variation, it has an initial condition of $(0,0)$. Graphically it will pass through the origin.

With this information we can determine if an equation is a direct variation or not. How? Solve any equation for $y$. Is the equation in the $y=k x$ form? If yes, the coefficient is the constant of variation.

Tell whether each equation represents a direct variation. If so, identify the constant of variation. (Solve $y=$ $k x$ for $k$ ( $)$ )

$$
3 y=4 x+1 \quad 3 x=-4 y \quad y+3 x=0
$$

So, IF we have a direct variation, the ratio $\frac{y}{x}$ is equal to the constant of variation.

Determine if the relationship is a direct variation, explain and graph. If it is direct variation, write the equation.

| $x$ | -3 | 1 | 3 |
| :--- | :--- | :--- | :--- |
| $y$ | 0 | 3 | 6 |


| x | 2.5 | 5 | 7.5 |
| :--- | :--- | :--- | :--- |
| y | -10 | -20 | -30 |


| $x$ | -2 | 1 | 4 |
| :--- | :--- | :--- | :--- |
| $y$ | 5 | 3 | 1 |





The perimeter of $\mathbf{y}$ of a square varies directly with its side length $\mathbf{x}$. Write a direct variation equation for this relationship and graph.


The distance traversed by a car traveling at a constant speed is directly proportional to the time spent traveling. If the car travels 75 kilometers in 5 hours, how far will it go in 7 hours?

