Algebra I
 Lesson 3.6 - Solving Compound Inequalities
 Mrs. Snow, Instructor

Did you know that not only is there a maximum speed limit on highways, but there is also a minimum speed limit? Yep, the Texas Transportation Code 545.363 clearly outlines minimum limits. That means if you drive slower than the minimum you may get a what? "slow poke" ticket? Now a minimum speed limit combined with a maximum speed limit is a compound inequality.

Vocabulary:

Compound inequality - an inequality that has both maximum and minimum limits. When seen as a written statement, the words AND or OR will be used.
And - compound inequalities using AND have a solution that will be the numbers that make each part of the compound inequality true.
Intersection - the overlapping solution area of "AND" compound inequalities.
Or - compound inequalities using OR have a solution that will make either part of the inequality true.
Union: - the combined regions of "OR" compound inequalities.

Graph:

$$
3<h \leq 10 \quad-2 \leq x<5
$$

Using OR:

Graph:

Of course there is more? We can have compound inequality equations! Solve and graph:

$\begin{gathered} 5 \leq x+7<15 \\ 5 \leq x+7 \text { and } x+7<15 \\ 5-7 \leq x+7-7 \text { and } x+7-7<15-7 \\ -2 \leq x \text { and } x<8 \end{gathered}$	1. Break the inequality into separate parts using AND 2. Solve each inequality separately.
	3. Graph each inequality
overlap area	4. Solution is the overlapping area.
$\stackrel{10-9-8-7-6-5-4-3-2-1}{4} 0$	

Solve and graph the compound inequalities:

$$
-9<x-10<-5
$$

$$
-4 \leq 3 n+5<11
$$

$$
2+r<12 \text { or } r+5>19
$$

$7 x \geq 21$ or $2 x<x$

Write a compound inequality from the given graph:

