Algebra I Lesson 3.6 – Solving Compound Inequalities Mrs. Snow, Instructor

Did you know that not only is there a maximum speed limit on highways, but there is also a minimum speed limit? Yep, the Texas Transportation Code 545.363 clearly outlines minimum limits. That means if you drive slower than the minimum you may get a what? "slow poke" ticket? Now a minimum speed limit combined with a maximum speed limit is a **compound inequality.**

Vocabulary:

Compound inequality – an inequality that has both maximum and minimum limits. When seen as a written statement, the words AND or OR will be used.

And – compound inequalities using AND have a solution that will be the numbers that make each part of the compound inequality true.

Intersection – the overlapping solution area of "AND" compound inequalities.

Or – compound inequalities using OR have a solution that will make <u>either</u> part of the inequality true.

Union: - the combined regions of "OR" compound inequalities.

Graph:

$3 < h \leq 10$

 $-2 \le x < 5$

Using OR:

Graph:

 \leftarrow

x < 4 or x > 10	$r \ge 4 \text{ or } r < 6$
	 · · · · · · · · · · · · · · · · · · ·

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10

Of course there is more? We can have **compound inequality equations**! Solve and graph:

$5 \le x + 7 < 15$ $5 \le x + 7 \text{ and } x + 7 < 15$ $5 - 7 \le x + 7 - 7 \text{ and } x + 7 - 7 < 15 - 7$	1. Break the inequality into separate parts using AND
$-2 \le x$ and $x < 8$	2. Solve each inequality separately.
$ \xrightarrow{-10-9-8-7-6-5-4-3-2-1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 } -2 \le x $	3. Graph each inequality
-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 overlap area	4. Solution is the overlapping area.
$ \underbrace{ \begin{array}{c} -10-9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \end{array}} }_{x < 8} $	

Solve and graph the compound inequalities:

$$-9 < x - 10 < -5$$

 $-4 \le 3n + 5 < 11$

 $\leftarrow +$ + + + \rightarrow

2 + r < 12 or r + 5 > 19

 $7x \ge 21 \text{ or } 2x < x$

+ -+ +

 \rightarrow

+

+ + -+-

Write a compound inequality from the given graph: -10-9-8-7-6-5-4-3-2-1 **0** 1 2 3 4 5 6 7 8 9 10

 \leftarrow

+ +