Algebra I

Lesson 12.1 - Inverse Variation

Mrs. Snow, Instructor

In chapter 5 we learned that when two variable quantities have a constant (unchanged) ratio, their relationship is called a direct variation. We say that y varies directly as x. The constant ratio, \mathbf{k}, is called the constant of variation. The formula for direct variation is: $y=k x$ where: $k=\frac{y}{x}$. Basically, our constant of variation is our slope.

There is another relationship between x and y that is known as Inverse Variation. In an inverse variation, the values of the two variables change in an opposite manner, that is, as one value increases, the other proportionately decreases. We say that y varies inversely to x or y is inversely proportional to x.

Vocabulary

Inverse Variation - A relationship that can be written in the form $y=\frac{k}{x}$, or $x=\frac{k}{y}$, where $\boldsymbol{k}=\boldsymbol{x y}$
Direct Variation - A relationship that can be written in the form $y=k x$, where $\boldsymbol{k}=\frac{y}{x}$
Constant of Variation - is the number that relates two variables that are directly proportional or inversely proportional to one another. The constant \boldsymbol{k} in direct and inverse variation equations.

Question: Is the graph of an inverse variation linear? What is the form of a linear equation?
How can we tell if a set of data is direct or inverse variation? Well, what is our constant of variation equal to for our different variation problems?

Direct variation	Inverse variation
look for a constant rate of change: $\boldsymbol{k}=\frac{\boldsymbol{y}}{\boldsymbol{x}}$	look for a constant product: $\boldsymbol{k}=\boldsymbol{x y}$

Are the relationships direct or inverse variations? Write the equation that models the data.

\mathbf{x}	1	2	3	4
\mathbf{y}	2.5	5	7.5	10

\mathbf{x}	-2	-1	1	5
\mathbf{y}	-5	-4	4	.8

\mathbf{x}	1	2	4	5
\mathbf{y}	-2.5	-1.25	-.625	-.5

When given an equation and asked to determine if it is an inverse relationship, see if the equation can be written in the form $y=\frac{k}{x}$.
Which are inverse variation equations?

$-7 x y=49$	$2 x+y=8$	$3 y=3 x-2 y$	$4 x y+5 x=6+5 x$

Example: Given y varies inversely as x . Write a variation function when $y=1.4$ and $x=$ 0.3 .

What is the value of y, when $x=5$?
x when $y=-0.3$?

1. Using our equation for inverse variation, substitute the values for x and y . Solve for k .
2. With the value of k, write the equation for inverse variation.
3. You now have an equation that for any given value of x you can find y and visa versa.
x and y vary inversely. When $x=16, y=0.5$.
Write an equation that models this relationship.

What is x when $y=30$? What is y when
$x=-2$?

Let's look at an example. How long will it take a cycler to bike 8 miles? Well that depends on his speed. A biker traveling at 8 mph can cover 8 miles in 1 hour. If the biker's speed decreases to 4 mph , it will take the biker 2 hours to cover the same distance.

Rate $(\mathrm{mi} / \mathrm{hr})$	Time (hr)
8	1
4	2
1	8

Notice that as the rate decreases, the time increases. Cut the rate in half, the time doubles. Our rate equation may be written as $t=\frac{d}{r}$, at distance equal to 8 miles we get: $t=\frac{8}{r}$ or tr $=8$

Graph: $y=\frac{6}{x}, \quad y=-\frac{2}{x}$, and $y=\frac{1}{x}$
Yes! Table of values, choose both negative and positive values for x . You

x	y
-8	
$-\frac{1}{2}$	
0	
2	
8	

x	y

An inverse variation graph is made up of 2 parts or branches. Note the graph of an inverse variation will never contain the point (0,0). Why?

Well, look at the equation, can $\mathrm{x}=0$?
There are Asymptotes at $x=0$ and $y=0$

