Algebra I Lesson 12.1 – Inverse Variation Mrs. Snow, Instructor

In chapter 5 we learned that when two variable quantities have a constant (unchanged) ratio, their relationship is called a **direct variation**. We say that y <u>varies directly</u> as x. The constant ratio, **k**, is called the **constant of variation**. The formula for direct variation is: y = kx where: $k = \frac{y}{x}$. Basically, our constant of variation is our slope.

There is another relationship between x and y that is known as **Inverse Variation**. In an inverse variation, the values of the two variables change in an opposite manner, that is, as one value increases, the other proportionately decreases. We say that y <u>varies inversely</u> to x or y is inversely proportional to x.

Vocabulary

Inverse Variation – A relationship that can be written in the form $y = \frac{k}{x}$, or $x = \frac{k}{y}$, where k = xy**Direct Variation** – A relationship that can be written in the form y = kx, where $k = \frac{y}{x}$

Constant of Variation – is the number that relates two variables that are directly proportional or inversely proportional to one another. The constant \mathbf{k} in direct and inverse variation equations.

Question: Is the graph of an inverse variation linear? What is the form of a linear equation?

How can we tell if a set of data is direct or inverse variation? Well, what is our constant of variation equal to for our different variation problems?

Direct variation	Inverse variation			
look for a constant rate of change: $k = \frac{y}{x}$	look for a constant product: $k = xy$			

Are the relationships direct or inverse variations? Write the equation that models the data.

х	1	2	3	4		х	-2	-1	1	5		х	1	2	4	5
У	2.5	5	7.5	10		У	-5	-4	4	.8		У	-2.5	-1.25	625	5
											-					
					-											
х	2	4	1	6												
У	3.2	2 1	L.6	1.1												
					_											

When given an equation and asked to determine if it is an inverse relationship, see if the equation can be written in the form $y = \frac{k}{r}$.

Which are inverse variation equations?

-7xy = 49	2x + y = 8	3y = 3x - 2y	4xy + 5x = 6 + 5x

Example: Given y varies inversely as x. Write a variation function when $y = 1.4$ and $x = 0.3$.	1.	Using our equation for inverse variation, substitute the values for x and y. Solve for k.
What is the value of y, when $x = 5$? x when $y = -0.3$?	2. 3.	With the value of k, write the equation for inverse variation. You now have an equation that for any given value of x you can find y and visa versa.
x and y vary inversely. When $x = 16$, $y = 0.5$. Write an equation that models this relationship.		
What is x when $y = 30$? What is y when $x = -2$?		

Let's look at an example. How long will it take a cycler to bike 8 miles? Well that depends on his speed. A biker traveling at 8 mph can cover 8 miles in 1 hour. If the biker's speed decreases to 4 mph, it will take the biker 2 hours to cover the same distance.

