Algebra I Lesson 1.7 – Simplifying Expressions Mrs. Snow, Instructor

Sometimes using just the **order of operations** can make a simple problem seem harder than what it really is. For example: $\cdot 4 \cdot 9 \cdot 25$. With order of operation we move left to right so we get $36 \cdot 25$ gurrrrr! Let's stop and think about this. What other rules do we have from previous math classes?

Commutative property	a+b+c=c+b+a	order when just adding does not matter
of addition		;
Associative property	$\overline{(a+b)+c} = \overline{a+(b+c)}$	when just adding you can change grouping of the
of addition	1	numbers
Commutative property	$a \cdot b \cdot c = b \cdot a \cdot c$	order when just multiplying does not matter
of multiplication		
Associative property	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$	when just multiplying you can change grouping of
of addition	i	I the numbers
Distributive property	a(b+c) = ab + ac	Multiply the outside term with each term in the
		parentheses

With these rules we can rearrange our expression to:

Simplify:

 $15\frac{1}{3} + 4 +$

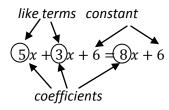
	$4 \cdot 25 \cdot 9 =$ (4 \cdot 25) \cdot 9 = 100 \cdot 9 = = 900	-	tative prop. of multiplication ive prop. of multiplication –	-
$1\frac{2}{3}$	410 + 58 +	90	1/2 · 7 · 8	2 • 29 • 50

Sometimes multiplying two numbers can be made easier through distribution:

9(52) =9(50 + 2) =9(50) + 9(2) =450 + 18 == 468	 rewrite the 52 use distribution property simplify 	
---	---	--

12(98) =	7(34) =	6(19)	6(21)
----------	---------	-------	-------

Add:



OK we have 2 apples and 1 strawberry. We added like fruits. It

is impossible to add the strawberry to the apples and get 3 apples! (hummm, maybe strapple?)

In math expressions, we have stuff added, subtracted, multiplied, and divided together. The *stuff* have special names.

- **Term** each piece of *stuff* is called
- **Constant** if the term is just a number.
- Like terms terms that contain the same variable.
- **Coefficient** a number in front of the variable.
- Just as we combined the apples together, like terms may be combined

how many x-terms do we have? In one term we have 5 the other we have 3, a total of 8. So our expression simplifies out as shown above.

Combine like terms and simplify: $2x + 3y - 5h + 4x - 3y + 7 + x^2 + 8h + 6y - 3 + 5x$

There are two thought processes that may be used to simplify these problems.

- 1. Using distribution property to combine like terms. Factor out the common factor to simplify the expression. What? Practice this process; it will be beneficial in advanced applications. Trust me!
- 2. Combine like terms by adding or subtracting the coefficients and keeping the variables and exponents the same.

Simplify:

Distr

Distribution

Combine like terms

 $3m^2 - m^2$

16p + 24p

Simplify and ID the steps (think about order of operations too): 6(x + 4) + 9 -12x + 5x - 3a + x