Algebra I Lesson 1.5 – Square Roots and Real Numbers Mrs. Snow, Instructor

Mariana is getting a small kennel for her new puppy to stay in. The kennel she bought says it is **9 square feet**. What does this mean? How much floor space does she need? That is, what are the dimensions of the kennel? Let's assume that the kennel has a square base.

Well, how do we tackle this? *Draw a picture*? Yes! Draw a square and label it as 9 ft². To solve this we need to work backwards. What number times itself equals 9????

What we did to solve this problem was to take the **square root** of 9. A number that is multiplied by itself to form a product is called a **square root** of the product. *Here* **3** *is the square root of* **9**. The symbol for square root is: $\sqrt{9} = 3$

Inverse operations: Squaring a number and finding a square root are inverse operations. *The square root undoes the squaring.*

You must memorize the following table of **perfect squares** – a number whose positive square root is a whole number.

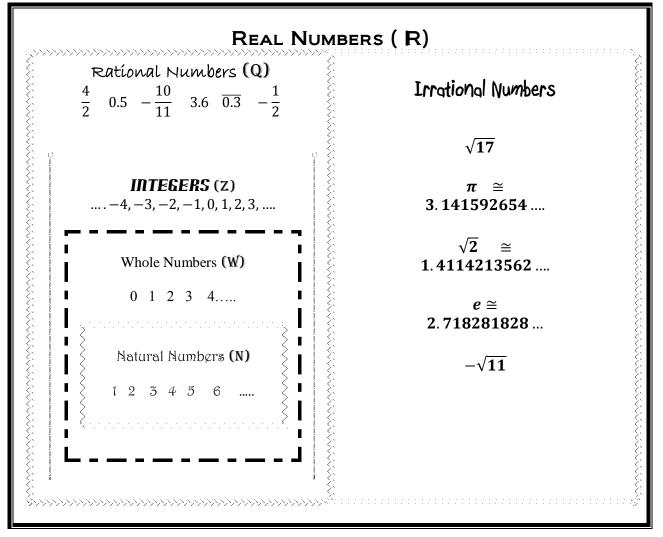
0	1	4	9	16	25	36	49	64	81	100
0 ²	1 ²	2 ²	3 ²	4 ²	5^2	6 ²	7 ²	8 ²	9 ²	10 ²

 $\sqrt{9}=$

Simplify:

 $\sqrt{49} =$

 $\sqrt{25}=$


In the case of $\sqrt{11}$ there are two options. First we can estimate. Second, to have an exact answer we leave it as $\sqrt{11}$. LEAVE AS AN EXACT ANSWERS UNLESS YOU ARE TOLD TO ESTIMATE!

 $\sqrt{36}=$

So estimate the value of $\sqrt{11}$ to the nearest 10th	
$\begin{array}{ccc} \sqrt{9} & <\sqrt{11} & <\sqrt{16} \\ \sqrt{9} & \sqrt{11} & & \sqrt{16} \end{array}$	1. Find the perfect squares that are less than and greater than your number
$ \xrightarrow{3} 3.1 \ 3.2 \ 3.3 \ 3.4 \ 3.5 \ 3.6 \ 3.7 \ 3.8 \ 3.9 \ 4 $ Ans: $\sqrt{11} \cong 3.3$	 2. Plot out on a number line. 3. Guess to find numbers that might be close 3.3²=10.89 3.4²=11.56 11 is closer to 10.89

Lady Bird Wildflower center sells bags of wildflower seeds. The bag says it will cover 19 ft². What approximate size square shaped area will Sara need to plant these seeds? Estimate to the nearest tenth of a foot.

YOU NEED TO LEARN, OK, MEMORIZE AND UNDERSTAND THESE RELATIONSHIPS!!!

Natural numbers: counting numbers **Whole numbers:** counting numbers plus 0 **Integers:** whole numbers and negatives **Rational numbers:** can be expressed as a fraction or a ratio; $\frac{a}{b}$ *a and b are integers but b* \neq 0 **Terminating decimals:** a rational number expressed as a decimal and the decimal terminates: 2.34, 5.2 **Repeating decimal:** a rational expressed as a decimal and the decimal repeats: 2.41414141. 0.33333 **Irrational number:** cannot be expressed as a fraction, it cannot be written as an exact number: $\sqrt{2}$, π (they just go crazy or irrational!)

List all classifications that apply to each real number: 14 -5

$\sqrt{3}$			0.5

0.33333 (this is equal to?)